Recurrent neural network model for bottomhole pressure and temperature in stepdown analysis

A method for fracturing a formation is provided. Real-time fracturing data is acquired from a well bore during fracturing operation. The real-time fracturing data is processed using a recurrent neural network trained using historical data from analogous wells. A real-time response variable predictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keshava Prasad Rangarajan, Yogendra Narayan Pandey, Srinath Madasu
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for fracturing a formation is provided. Real-time fracturing data is acquired from a well bore during fracturing operation. The real-time fracturing data is processed using a recurrent neural network trained using historical data from analogous wells. A real-time response variable prediction is determined using the processed real-time fracturing data. Fracturing parameters for the fracturing operation are adjusted in real-time based on the real-time response variable prediction. The fracturing operation is performed using the fracturing parameters that were adjusted based on the real-time response variable prediction.