COOLING GAS TURBINE ENGINES
A cavity is defined between the rotating and stationary parts of a gas turbine engine through which cavity air is circulated. Upstream and downstream seals are disposed at opposite ends of the cavity for regulating the circulation of air flowing into and out of the cavity. A cooling air circuit for...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cavity is defined between the rotating and stationary parts of a gas turbine engine through which cavity air is circulated. Upstream and downstream seals are disposed at opposite ends of the cavity for regulating the circulation of air flowing into and out of the cavity. A cooling air circuit for the engine rotor is provided which channels air from the stationary portion of the engine to the rotor through the cavity therebetween. The rotor air cooling circuit includes an inducer chamber where the cooling air is accelerated and transferred to the engine rotor. The inducer chamber is defined by two additional seals which, in conjunction with the other cavity seals define chambers upstream and downstream of the central inducer chamber. A bypass circuit directs the air circulated within the upstream chamber directly to the downstream chamber (bypassing the inducer chamber) so that the coolant air flowing through the inducer chamber is not contaminated with the air circulated between the engine rotor and stator. |
---|