QUANTIZATION ROBUST FEDERATED MACHINE LEARNING

Aspects described herein provide techniques for performing quantization robust federated learning of a machine learning model, comprising: receiving a model from a federated learning server; training the model using a local objective function, wherein the local objective function includes a modifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FOURNARAKIS, Marios, NAGEL, Markus, REISSER, Matthias, LOUIZOS, Christos, GUPTA, Kartik
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aspects described herein provide techniques for performing quantization robust federated learning of a machine learning model, comprising: receiving a model from a federated learning server; training the model using a local objective function, wherein the local objective function includes a modification configured to increase quantization robustness at a client device; and transmitting to the federated learning server an updated model.