OVERVOLTAGE PROTECTION SPARK GAP ASSEMBLY AND METHOD FOR OPERATING AN OVERVOLTAGE PROTECTION SPARK GAP ASSEMBLY

The present invention provides an overvoltage protection spark gap assembly and a method for operating an overvoltage protection spark gap assembly. The overvoltage protection spark gap assembly comprises a first overvoltage protection spark gap (1) which has a first main terminal (1a) and a second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DAUM, Richard, HAAS, Sebastian, KRAUSS, Bernhard, LANG, Christian, EICHENSEER, Roland, KLOSE, Juliane
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention provides an overvoltage protection spark gap assembly and a method for operating an overvoltage protection spark gap assembly. The overvoltage protection spark gap assembly comprises a first overvoltage protection spark gap (1) which has a first main terminal (1a) and a second main terminal (1b); a second overvoltage protection spark gap (1′) which has a third main terminal (1a′) and a fourth main terminal (1b′). The first main terminal (1a) can be connected to a first voltage line (S1) of a supply network via a first terminal contact (A1) and the fourth main terminal (1b′) can be connected to a second voltage line (S2) of the supply network via a second terminal contact (A2). The second main terminal (1b) and the third main terminal (1a′) are electrically connected to one another. A first electrically conductive probe device (K2) is introduced into, or in the vicinity of, a wear part (38) of the first overvoltage protection spark gap (1) such that, in the event of a specific degree of wear, the first electrically conductive probe device (K2) comes electrically into contact with an arc (41) in the first overvoltage protection spark gap (1). The second overvoltage protection spark gap (1′) has a second electrically conductive probe device (33) which comes electrically into contact with an arc in the second overvoltage protection spark gap (1′). The first electrically conductive probe device (K2) and the second electrically conductive probe device (33) are electrically connected to one another via an activation device (28; 4″) which outputs an activation signal (S) in order to activate a disconnecting device (A; 7, 8, 11, 12) if a flow of current or a corresponding portion of the flow of current between the first and second probe device (K2; 33) satisfies a specified criterion.