SYSTEMS AND METHODS FOR RECONSTRUCTING IMAGES USING UNCERTAINTY LOSS
Model-based image reconstruction (MBIR) methods using convolutional neural networks (CNNs) as priors have demonstrated superior image quality and robustness compared to conventional methods. Studies have explored MBIR combined with supervised and unsupervised denoising techniques for image reconstru...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model-based image reconstruction (MBIR) methods using convolutional neural networks (CNNs) as priors have demonstrated superior image quality and robustness compared to conventional methods. Studies have explored MBIR combined with supervised and unsupervised denoising techniques for image reconstruction in magnetic resonance imaging (MRI) and positron emission tomography (PET). Unsupervised methods like the deep image prior (DIP) have shown promising results and are less prone to hallucinations. However, since the noisy image is used as a reference, strategies to prevent overfitting are unclear. Recently, Bayesian DIP (BDIP) networks that model uncertainty tend to prevent overfitting without requiring early stopping. However, BDIP has not been studied with data-fidelity term for image reconstruction. Present disclosure provides systems and method that implement a MBIR framework with a modified BDIP. Specifically, an uncertainty-based penalty is included to the BDIP to improve reconstruction across iterations. |
---|