METHOD AND SYSTEM FOR CAUSAL INFERENCE AND ROOT CAUSE IDENTIFICATION IN INDUSTRIAL PROCESSES

Fault diagnosis in industries typically involves identification of key variables/sensors bearing fault signature, classification of detected fault into known fault classes and detecting root causes/sources of the fault. This disclosure relates to a method and system for a deep learning based causal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZOPE, Kalyani Bharat, SINGHAL, Tanmaya, NISTALA, Sri Harsha, RUNKANA, Venkataramana
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fault diagnosis in industries typically involves identification of key variables/sensors bearing fault signature, classification of detected fault into known fault classes and detecting root causes/sources of the fault. This disclosure relates to a method and system for a deep learning based causal inference in a multivariate time series data of abnormal events and failures in industrial manufacturing processes and equipment. The system generates causal networks for non-linear and non-stationary multivariate time series data. The causal network learns for a dynamic non-stationary and nonlinear complex process or system fault using observed data without any prior process knowledge. The causal networks of faults are identified in real-time using a deep learning-based causal network learning technique. The system identifies causal connections and temporal lag information among variables to generate a directed causal graph of fault called the causal network, which is used to identify fault propagation paths and root cause variables.