METHOD AND SYSTEM FOR CAUSAL INFERENCE AND ROOT CAUSE IDENTIFICATION IN INDUSTRIAL PROCESSES
Fault diagnosis in industries typically involves identification of key variables/sensors bearing fault signature, classification of detected fault into known fault classes and detecting root causes/sources of the fault. This disclosure relates to a method and system for a deep learning based causal...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fault diagnosis in industries typically involves identification of key variables/sensors bearing fault signature, classification of detected fault into known fault classes and detecting root causes/sources of the fault. This disclosure relates to a method and system for a deep learning based causal inference in a multivariate time series data of abnormal events and failures in industrial manufacturing processes and equipment. The system generates causal networks for non-linear and non-stationary multivariate time series data. The causal network learns for a dynamic non-stationary and nonlinear complex process or system fault using observed data without any prior process knowledge. The causal networks of faults are identified in real-time using a deep learning-based causal network learning technique. The system identifies causal connections and temporal lag information among variables to generate a directed causal graph of fault called the causal network, which is used to identify fault propagation paths and root cause variables. |
---|