THIN METAL STRIP CONTINUOUS CASTING METHOD USING MOMENTUM FLOW DISTRIBUTION

A thin metal strip continuous casting method using momentum flow distribution, comprising the steps of: adjusting the position of a flow distribution device (2), and starting a double-roller thin strip continuous casting apparatus; molten metal (3) forming a uniform sheet-shaped molten metal flow (4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIANG, Tianliang, ZHU, Biji, ZHOU, Cheng, XIE, Jianxin, XUAN, Dongpo, ZHOU, You, FAN, Wenhao, ZHANG, Zhihao
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A thin metal strip continuous casting method using momentum flow distribution, comprising the steps of: adjusting the position of a flow distribution device (2), and starting a double-roller thin strip continuous casting apparatus; molten metal (3) forming a uniform sheet-shaped molten metal flow (4) having an initial momentum after the molten metal (3) passes through the flow distribution device; the sheet-shaped molten metal flow entering a molten pool (5) at a superheat degree of 50-100°C and an initial velocity of 0.5-2 m/s, wherein the flow distribution device is spaced apart from the molten pool; under the action of the initial velocity of the molten metal and in the molten pool, forming a whirlpool, which is adjacent to surfaces of two cooling rollers and has a momentum stirring action; and completing the solidification of the molten metal under the momentum stirring action of the whirlpool along with the rotation of the two cooling rollers. In the method, a whirlpool, which is adjacent to surfaces of cooling rollers and has a momentum stirring action, is formed in a molten pool by means of the kinetic energy of molten metal, such that equiaxed crystals can be prepared when a superheat degree is as high as 50-100°C, and the proportion of equiaxed crystals can be increased to 100%, thereby refining crystal grains and alleviating segregation.