METHOD AND SYSTEM FOR MULTI-SENSOR FUSION IN THE PRESENCE OF MISSING AND NOISY LABELS

This disclosure relates to a method and system for multi-sensor fusion in the presence of missing and noisy labels. Prior methods for multi-sensor fusion do not estimate and correct labels for learning effective models in semi-supervised learning methods. Embodiments of the present disclosure provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SAHU, Saurabh, CHANDRA, Mariswamy Girish, KUMAR, Kriti, KUMAR, Achanna Anil, MAJUMDAR, Angshul
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SAHU, Saurabh
CHANDRA, Mariswamy Girish
KUMAR, Kriti
KUMAR, Achanna Anil
MAJUMDAR, Angshul
description This disclosure relates to a method and system for multi-sensor fusion in the presence of missing and noisy labels. Prior methods for multi-sensor fusion do not estimate and correct labels for learning effective models in semi-supervised learning methods. Embodiments of the present disclosure provides a method for learning robust sensor-specific autoencoder based fusion model by utilizing a graph structure to perform label propagation and correction. In the disclosed Graph regularized AutoFuse (GAF) method latent representation for each sensor is learnt using the sensor-specific autoencoders. Further these latent representations are combined and fed to a classifier for multi-class classification. The disclosure presents a joint optimization formulation for multi-sensor fusion where label propagation and correction, sensor-specific learning and classification are executed together.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4290414B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4290414B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4290414B13</originalsourceid><addsrcrecordid>eNqNi00KwjAQRrNxIeod5gIFq9m47M_EDCST0kkWXZUicSVaqPfHIh7A1cd7vG-rksdoQwsVtyCDRPRgQg8-uUiFIMsKJgkFBmKIFqHrcfUNQjDgSYT4-n1zIBnAVTU62avNfXos-fDbnQKDsbFFnl9jXubplp_5PWKnT5ejLnVdnv9IPu5_L9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND SYSTEM FOR MULTI-SENSOR FUSION IN THE PRESENCE OF MISSING AND NOISY LABELS</title><source>esp@cenet</source><creator>SAHU, Saurabh ; CHANDRA, Mariswamy Girish ; KUMAR, Kriti ; KUMAR, Achanna Anil ; MAJUMDAR, Angshul</creator><creatorcontrib>SAHU, Saurabh ; CHANDRA, Mariswamy Girish ; KUMAR, Kriti ; KUMAR, Achanna Anil ; MAJUMDAR, Angshul</creatorcontrib><description>This disclosure relates to a method and system for multi-sensor fusion in the presence of missing and noisy labels. Prior methods for multi-sensor fusion do not estimate and correct labels for learning effective models in semi-supervised learning methods. Embodiments of the present disclosure provides a method for learning robust sensor-specific autoencoder based fusion model by utilizing a graph structure to perform label propagation and correction. In the disclosed Graph regularized AutoFuse (GAF) method latent representation for each sensor is learnt using the sensor-specific autoencoders. Further these latent representations are combined and fed to a classifier for multi-class classification. The disclosure presents a joint optimization formulation for multi-sensor fusion where label propagation and correction, sensor-specific learning and classification are executed together.</description><language>eng ; fre ; ger</language><subject>BLASTING ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ENGINEERING ELEMENTS AND UNITS ; GEARING ; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS ; HEATING ; LIGHTING ; MECHANICAL ENGINEERING ; PHYSICS ; THERMAL INSULATION IN GENERAL ; WEAPONS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241127&amp;DB=EPODOC&amp;CC=EP&amp;NR=4290414B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241127&amp;DB=EPODOC&amp;CC=EP&amp;NR=4290414B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SAHU, Saurabh</creatorcontrib><creatorcontrib>CHANDRA, Mariswamy Girish</creatorcontrib><creatorcontrib>KUMAR, Kriti</creatorcontrib><creatorcontrib>KUMAR, Achanna Anil</creatorcontrib><creatorcontrib>MAJUMDAR, Angshul</creatorcontrib><title>METHOD AND SYSTEM FOR MULTI-SENSOR FUSION IN THE PRESENCE OF MISSING AND NOISY LABELS</title><description>This disclosure relates to a method and system for multi-sensor fusion in the presence of missing and noisy labels. Prior methods for multi-sensor fusion do not estimate and correct labels for learning effective models in semi-supervised learning methods. Embodiments of the present disclosure provides a method for learning robust sensor-specific autoencoder based fusion model by utilizing a graph structure to perform label propagation and correction. In the disclosed Graph regularized AutoFuse (GAF) method latent representation for each sensor is learnt using the sensor-specific autoencoders. Further these latent representations are combined and fed to a classifier for multi-class classification. The disclosure presents a joint optimization formulation for multi-sensor fusion where label propagation and correction, sensor-specific learning and classification are executed together.</description><subject>BLASTING</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ENGINEERING ELEMENTS AND UNITS</subject><subject>GEARING</subject><subject>GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>PHYSICS</subject><subject>THERMAL INSULATION IN GENERAL</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi00KwjAQRrNxIeod5gIFq9m47M_EDCST0kkWXZUicSVaqPfHIh7A1cd7vG-rksdoQwsVtyCDRPRgQg8-uUiFIMsKJgkFBmKIFqHrcfUNQjDgSYT4-n1zIBnAVTU62avNfXos-fDbnQKDsbFFnl9jXubplp_5PWKnT5ejLnVdnv9IPu5_L9A</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>SAHU, Saurabh</creator><creator>CHANDRA, Mariswamy Girish</creator><creator>KUMAR, Kriti</creator><creator>KUMAR, Achanna Anil</creator><creator>MAJUMDAR, Angshul</creator><scope>EVB</scope></search><sort><creationdate>20241127</creationdate><title>METHOD AND SYSTEM FOR MULTI-SENSOR FUSION IN THE PRESENCE OF MISSING AND NOISY LABELS</title><author>SAHU, Saurabh ; CHANDRA, Mariswamy Girish ; KUMAR, Kriti ; KUMAR, Achanna Anil ; MAJUMDAR, Angshul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4290414B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>BLASTING</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ENGINEERING ELEMENTS AND UNITS</topic><topic>GEARING</topic><topic>GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>PHYSICS</topic><topic>THERMAL INSULATION IN GENERAL</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>SAHU, Saurabh</creatorcontrib><creatorcontrib>CHANDRA, Mariswamy Girish</creatorcontrib><creatorcontrib>KUMAR, Kriti</creatorcontrib><creatorcontrib>KUMAR, Achanna Anil</creatorcontrib><creatorcontrib>MAJUMDAR, Angshul</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SAHU, Saurabh</au><au>CHANDRA, Mariswamy Girish</au><au>KUMAR, Kriti</au><au>KUMAR, Achanna Anil</au><au>MAJUMDAR, Angshul</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND SYSTEM FOR MULTI-SENSOR FUSION IN THE PRESENCE OF MISSING AND NOISY LABELS</title><date>2024-11-27</date><risdate>2024</risdate><abstract>This disclosure relates to a method and system for multi-sensor fusion in the presence of missing and noisy labels. Prior methods for multi-sensor fusion do not estimate and correct labels for learning effective models in semi-supervised learning methods. Embodiments of the present disclosure provides a method for learning robust sensor-specific autoencoder based fusion model by utilizing a graph structure to perform label propagation and correction. In the disclosed Graph regularized AutoFuse (GAF) method latent representation for each sensor is learnt using the sensor-specific autoencoders. Further these latent representations are combined and fed to a classifier for multi-class classification. The disclosure presents a joint optimization formulation for multi-sensor fusion where label propagation and correction, sensor-specific learning and classification are executed together.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4290414B1
source esp@cenet
subjects BLASTING
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ENGINEERING ELEMENTS AND UNITS
GEARING
GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVEFUNCTIONING OF MACHINES OR INSTALLATIONS
HEATING
LIGHTING
MECHANICAL ENGINEERING
PHYSICS
THERMAL INSULATION IN GENERAL
WEAPONS
title METHOD AND SYSTEM FOR MULTI-SENSOR FUSION IN THE PRESENCE OF MISSING AND NOISY LABELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SAHU,%20Saurabh&rft.date=2024-11-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4290414B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true