METHOD AND SYSTEM FOR MULTI-SENSOR FUSION IN THE PRESENCE OF MISSING AND NOISY LABELS
This disclosure relates to a method and system for multi-sensor fusion in the presence of missing and noisy labels. Prior methods for multi-sensor fusion do not estimate and correct labels for learning effective models in semi-supervised learning methods. Embodiments of the present disclosure provid...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This disclosure relates to a method and system for multi-sensor fusion in the presence of missing and noisy labels. Prior methods for multi-sensor fusion do not estimate and correct labels for learning effective models in semi-supervised learning methods. Embodiments of the present disclosure provides a method for learning robust sensor-specific autoencoder based fusion model by utilizing a graph structure to perform label propagation and correction. In the disclosed Graph regularized AutoFuse (GAF) method latent representation for each sensor is learnt using the sensor-specific autoencoders. Further these latent representations are combined and fed to a classifier for multi-class classification. The disclosure presents a joint optimization formulation for multi-sensor fusion where label propagation and correction, sensor-specific learning and classification are executed together. |
---|