CONTROLLING AGENTS USING STATE ASSOCIATIVE LEARNING FOR LONG-TERM CREDIT ASSIGNMENT
A computer-implemented reinforcement learning neural network system that learns a model of rewards in order to relate actions by an agent in an environment to their long-term consequences. The model learns to decompose the rewards into components explainable by different past states. That is, the mo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A computer-implemented reinforcement learning neural network system that learns a model of rewards in order to relate actions by an agent in an environment to their long-term consequences. The model learns to decompose the rewards into components explainable by different past states. That is, the model learns to associate when being in a particular state of the environment is predictive of a reward in a later state, even when the later state, and reward, is only achieved after a very long time delay. |
---|