METHOD AND SYSTEM TO PROCESS ASYNCHRONOUS AND DISTRIBUTED TRAINING TASKS
This disclosure relates generally relates to method and system to process asynchronous and distributed training tasks. Training a large-scale deep neural network (DNN) model with large-scale training data is time-consuming. The method creates a work queue (Q) with a set of predefined number of tasks...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This disclosure relates generally relates to method and system to process asynchronous and distributed training tasks. Training a large-scale deep neural network (DNN) model with large-scale training data is time-consuming. The method creates a work queue (Q) with a set of predefined number of tasks comprising a training data. Here, set of central processing units (CPUs) information and a set of graphics processing units (GPUs) information are fetched from the current environment to initiate a parallel process asynchronously on the work queue (Q) to train a set of deep learning models with optimized resources using a data pre-processing technique, to compute a transformed training data and training by using an asynchronous model training technique, the set of deep learning models on each GPU asynchronously with the transformed training data based on a set of asynchronous model parameters. |
---|