FLUID COUPLING NETWORK FOR SAMPLING A BIOREACTOR
The present invention relates to a computer implemented method for controlling a fluid coupling network (170), the fluid coupling network (170) being configured to be fluidly couplable to bioreactor (110), a gas source (120), a buffer source (140), a waste port (150), a processing system (160) and a...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present invention relates to a computer implemented method for controlling a fluid coupling network (170), the fluid coupling network (170) being configured to be fluidly couplable to bioreactor (110), a gas source (120), a buffer source (140), a waste port (150), a processing system (160) and a conduit reservoir (208), the fluid coupling network (170) comprising a barrier unit (220) configured to sterilely separate fluid paths within the fluid coupling network (170), the fluid coupling network (170) being controllable to sample the bioreactor (110), the method comprising obtaining (510) a fluid sample from the bioreactor (110), wherein the step of obtaining the fluid sample comprises controlling a flow of fluid from the bioreactor (110) via the conduit reservoir (208) and the fluid coupling network (170) to the waste port (150), to fill the conduit reservoir (208) with the fluid from the bioreactor (110), providing (530) the fluid sample, wherein the step of providing the fluid sample comprises to provide the fluid sample to the processing system (160) from the conduit reservoir (208) via the fluid coupling network (170), and returning (540) residual fluid sample to the bioreactor (110), wherein the residual fluid sample is comprised by a part of the fluid coupling network (170) separated by the barrier unit (220), wherein the step of returning residual fluid sample comprises controlling a flow of gas from a gas source (120) to the bioreactor (110) via the part of the fluid coupling network (170). |
---|