OPTIMIZING JOB RUNTIMES VIA PREDICTION-BASED TOKEN ALLOCATION
Solutions for optimizing job runtimes via prediction-based token allocation includes receiving training data comprising historical run data, the historical run data comprising job characteristics, runtime results, and a token count for each of a plurality of prior jobs, and the job characteristics c...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solutions for optimizing job runtimes via prediction-based token allocation includes receiving training data comprising historical run data, the historical run data comprising job characteristics, runtime results, and a token count for each of a plurality of prior jobs, and the job characteristics comprising an intermediate representation and job graph data; based at least on the training data, training a token estimator, the token estimator comprising a machine learning (ML) model; receiving job characteristics for a user-submitted job; based at least on the received job characteristics, generating, with the token estimator, token prediction data for the user-submitted job; selecting a token count for the user-submitted job, based at least on the token prediction data; identifying the selected token count to an execution environment; and executing, with the execution environment, the user-submitted job in accordance with the selected token count. |
---|