PREDICTION AND METROLOGY OF STOCHASTIC PHOTORESIST THICKNESS DEFECTS

A mask pattern for a semiconductor device can be used as an input to determine a photoresist thickness probability distribution using a machine learning module. For example, the machine learning module can determine a probability map of Z-height. This can be used to determine stochastic variation in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BAI, Kunlun, ZHANG, Cao, BUROV, Anatoly, VUKKADALA, Pradeep, GRAVES, Trey John S, LI, Xiaohan, PARSEY, Guy, HIGGINS, Craig
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BAI, Kunlun
ZHANG, Cao
BUROV, Anatoly
VUKKADALA, Pradeep
GRAVES, Trey John S
LI, Xiaohan
PARSEY, Guy
HIGGINS, Craig
description A mask pattern for a semiconductor device can be used as an input to determine a photoresist thickness probability distribution using a machine learning module. For example, the machine learning module can determine a probability map of Z-height. This can be used to determine stochastic variation in photoresist thickness for a semiconductor device. The Z-height may be calculated at a coordinate in the X-direction and Y-direction.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4200672A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4200672A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4200672A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDqL-w_2AUKvoHC4XE9RcyN3SqRRJp6KF-v-4-AFOb3lr43IhF1EjJ7DJwYO08J2vHbAHUcZgRSNCDqxcSKIoaIh4SyQCjjyhytasxmFa6u7nxoAnxbCv87uvyzw866t-esqntmnOl9Yejn-ULzJ3K7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTION AND METROLOGY OF STOCHASTIC PHOTORESIST THICKNESS DEFECTS</title><source>esp@cenet</source><creator>BAI, Kunlun ; ZHANG, Cao ; BUROV, Anatoly ; VUKKADALA, Pradeep ; GRAVES, Trey John S ; LI, Xiaohan ; PARSEY, Guy ; HIGGINS, Craig</creator><creatorcontrib>BAI, Kunlun ; ZHANG, Cao ; BUROV, Anatoly ; VUKKADALA, Pradeep ; GRAVES, Trey John S ; LI, Xiaohan ; PARSEY, Guy ; HIGGINS, Craig</creatorcontrib><description>A mask pattern for a semiconductor device can be used as an input to determine a photoresist thickness probability distribution using a machine learning module. For example, the machine learning module can determine a probability map of Z-height. This can be used to determine stochastic variation in photoresist thickness for a semiconductor device. The Z-height may be calculated at a coordinate in the X-direction and Y-direction.</description><language>eng ; fre ; ger</language><subject>APPARATUS SPECIALLY ADAPTED THEREFOR ; CALCULATING ; CINEMATOGRAPHY ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTROGRAPHY ; HOLOGRAPHY ; MATERIALS THEREFOR ; ORIGINALS THEREFOR ; PHOTOGRAPHY ; PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES,e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTORDEVICES ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230628&amp;DB=EPODOC&amp;CC=EP&amp;NR=4200672A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230628&amp;DB=EPODOC&amp;CC=EP&amp;NR=4200672A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BAI, Kunlun</creatorcontrib><creatorcontrib>ZHANG, Cao</creatorcontrib><creatorcontrib>BUROV, Anatoly</creatorcontrib><creatorcontrib>VUKKADALA, Pradeep</creatorcontrib><creatorcontrib>GRAVES, Trey John S</creatorcontrib><creatorcontrib>LI, Xiaohan</creatorcontrib><creatorcontrib>PARSEY, Guy</creatorcontrib><creatorcontrib>HIGGINS, Craig</creatorcontrib><title>PREDICTION AND METROLOGY OF STOCHASTIC PHOTORESIST THICKNESS DEFECTS</title><description>A mask pattern for a semiconductor device can be used as an input to determine a photoresist thickness probability distribution using a machine learning module. For example, the machine learning module can determine a probability map of Z-height. This can be used to determine stochastic variation in photoresist thickness for a semiconductor device. The Z-height may be calculated at a coordinate in the X-direction and Y-direction.</description><subject>APPARATUS SPECIALLY ADAPTED THEREFOR</subject><subject>CALCULATING</subject><subject>CINEMATOGRAPHY</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTROGRAPHY</subject><subject>HOLOGRAPHY</subject><subject>MATERIALS THEREFOR</subject><subject>ORIGINALS THEREFOR</subject><subject>PHOTOGRAPHY</subject><subject>PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES,e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTORDEVICES</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDqL-w_2AUKvoHC4XE9RcyN3SqRRJp6KF-v-4-AFOb3lr43IhF1EjJ7DJwYO08J2vHbAHUcZgRSNCDqxcSKIoaIh4SyQCjjyhytasxmFa6u7nxoAnxbCv87uvyzw866t-esqntmnOl9Yejn-ULzJ3K7s</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>BAI, Kunlun</creator><creator>ZHANG, Cao</creator><creator>BUROV, Anatoly</creator><creator>VUKKADALA, Pradeep</creator><creator>GRAVES, Trey John S</creator><creator>LI, Xiaohan</creator><creator>PARSEY, Guy</creator><creator>HIGGINS, Craig</creator><scope>EVB</scope></search><sort><creationdate>20230628</creationdate><title>PREDICTION AND METROLOGY OF STOCHASTIC PHOTORESIST THICKNESS DEFECTS</title><author>BAI, Kunlun ; ZHANG, Cao ; BUROV, Anatoly ; VUKKADALA, Pradeep ; GRAVES, Trey John S ; LI, Xiaohan ; PARSEY, Guy ; HIGGINS, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4200672A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>APPARATUS SPECIALLY ADAPTED THEREFOR</topic><topic>CALCULATING</topic><topic>CINEMATOGRAPHY</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTROGRAPHY</topic><topic>HOLOGRAPHY</topic><topic>MATERIALS THEREFOR</topic><topic>ORIGINALS THEREFOR</topic><topic>PHOTOGRAPHY</topic><topic>PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES,e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTORDEVICES</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BAI, Kunlun</creatorcontrib><creatorcontrib>ZHANG, Cao</creatorcontrib><creatorcontrib>BUROV, Anatoly</creatorcontrib><creatorcontrib>VUKKADALA, Pradeep</creatorcontrib><creatorcontrib>GRAVES, Trey John S</creatorcontrib><creatorcontrib>LI, Xiaohan</creatorcontrib><creatorcontrib>PARSEY, Guy</creatorcontrib><creatorcontrib>HIGGINS, Craig</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BAI, Kunlun</au><au>ZHANG, Cao</au><au>BUROV, Anatoly</au><au>VUKKADALA, Pradeep</au><au>GRAVES, Trey John S</au><au>LI, Xiaohan</au><au>PARSEY, Guy</au><au>HIGGINS, Craig</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTION AND METROLOGY OF STOCHASTIC PHOTORESIST THICKNESS DEFECTS</title><date>2023-06-28</date><risdate>2023</risdate><abstract>A mask pattern for a semiconductor device can be used as an input to determine a photoresist thickness probability distribution using a machine learning module. For example, the machine learning module can determine a probability map of Z-height. This can be used to determine stochastic variation in photoresist thickness for a semiconductor device. The Z-height may be calculated at a coordinate in the X-direction and Y-direction.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4200672A1
source esp@cenet
subjects APPARATUS SPECIALLY ADAPTED THEREFOR
CALCULATING
CINEMATOGRAPHY
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTROGRAPHY
HOLOGRAPHY
MATERIALS THEREFOR
ORIGINALS THEREFOR
PHOTOGRAPHY
PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES,e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTORDEVICES
PHYSICS
title PREDICTION AND METROLOGY OF STOCHASTIC PHOTORESIST THICKNESS DEFECTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BAI,%20Kunlun&rft.date=2023-06-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4200672A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true