PREDICTION AND METROLOGY OF STOCHASTIC PHOTORESIST THICKNESS DEFECTS

A mask pattern for a semiconductor device can be used as an input to determine a photoresist thickness probability distribution using a machine learning module. For example, the machine learning module can determine a probability map of Z-height. This can be used to determine stochastic variation in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BAI, Kunlun, ZHANG, Cao, BUROV, Anatoly, VUKKADALA, Pradeep, GRAVES, Trey John S, LI, Xiaohan, PARSEY, Guy, HIGGINS, Craig
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mask pattern for a semiconductor device can be used as an input to determine a photoresist thickness probability distribution using a machine learning module. For example, the machine learning module can determine a probability map of Z-height. This can be used to determine stochastic variation in photoresist thickness for a semiconductor device. The Z-height may be calculated at a coordinate in the X-direction and Y-direction.