PHYSICS-INFORMED NEURAL NETWORK FOR INVERSELY PREDICTING EFFECTIVE MATERIAL PROPERTIES OF METAMATERIALS
Present application provides systems and method implement apply a Physics-Informed Neural Network (PINN) for inversely calculating the effective material parameters of a multi-dimensional metamaterial from its scattered field(s). By employing a loss function based on the Helmholtz wave equation, per...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Present application provides systems and method implement apply a Physics-Informed Neural Network (PINN) for inversely calculating the effective material parameters of a multi-dimensional metamaterial from its scattered field(s). By employing a loss function based on the Helmholtz wave equation, performance of a metamaterial is modeled by the system the dependance of resonant behavior on the homogenized electric permittivity distribution profile generated by the PINN is demonstrated. |
---|