PHYSICS-INFORMED NEURAL NETWORK FOR INVERSELY PREDICTING EFFECTIVE MATERIAL PROPERTIES OF METAMATERIALS

Present application provides systems and method implement apply a Physics-Informed Neural Network (PINN) for inversely calculating the effective material parameters of a multi-dimensional metamaterial from its scattered field(s). By employing a loss function based on the Helmholtz wave equation, per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PILLAI, PRAJITH, PAL, PARAMA, RAI, BEENA, CHAUDHURI, ANIRBAN
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present application provides systems and method implement apply a Physics-Informed Neural Network (PINN) for inversely calculating the effective material parameters of a multi-dimensional metamaterial from its scattered field(s). By employing a loss function based on the Helmholtz wave equation, performance of a metamaterial is modeled by the system the dependance of resonant behavior on the homogenized electric permittivity distribution profile generated by the PINN is demonstrated.