MACHINE LEARNING-BASED TECHNIQUES FOR PROVIDING FOCUS TO PROBLEMATIC COMPUTE RESOURCES REPRESENTED VIA A DEPENDENCY GRAPH
Methods, systems, apparatuses, and computer-readable storage mediums are described for machine learning-based techniques for reducing the visual complexity of a dependency graph that is representative of an application or service. For example, the dependency graph is generated that comprises a plura...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods, systems, apparatuses, and computer-readable storage mediums are described for machine learning-based techniques for reducing the visual complexity of a dependency graph that is representative of an application or service. For example, the dependency graph is generated that comprises a plurality of nodes and edges. Each node represents a compute resource (e.g., a microservice) of the application or service. Each edge represents a dependency between nodes coupled thereto. A machine learning-based classification model analyzes each of the nodes to determine a likelihood that each of the nodes is a problematic compute resource. For instance, the classification model may output a score indicative of the likelihood that a particular compute resource is problematic. The nodes and/or edges having a score that exceed a predetermined threshold are provided focus via the dependency graph. |
---|