MACHINE-LEARNING TECHNIQUES FOR PREDICTING SURFACE-PRESENTING PEPTIDES

The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAUDENSCHILD, Christian, LEVY, Eric, BARTHA, Gabor, MILANI, Pamela, SALDIVAR, Juan-Sebastian, MCNITT, Paul, HARRIS, Jason, PYKE, Rachel, Marty, CLARK, Michael, ABBOTT, Charles, Wilbur, III, MELLACHERUVU, Dattatreya, CHEN, Richard, TANDON, Prateek, PHILLIPS, Nick, ZHANG, Simo, V, WEST, John, MORRA, Massimo, DESAI, Sejal, MCCLORY, Rena, POWER, Robert, BOYLE, Sean, Michael
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HAUDENSCHILD, Christian
LEVY, Eric
BARTHA, Gabor
MILANI, Pamela
SALDIVAR, Juan-Sebastian
MCNITT, Paul
HARRIS, Jason
PYKE, Rachel, Marty
CLARK, Michael
ABBOTT, Charles, Wilbur, III
MELLACHERUVU, Dattatreya
CHEN, Richard
TANDON, Prateek
PHILLIPS, Nick
ZHANG, Simo, V
WEST, John
MORRA, Massimo
DESAI, Sejal
MCCLORY, Rena
POWER, Robert
BOYLE, Sean, Michael
description The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression levels and the one or more peptide-presentation metrics are related in accordance with a population-level relationship between expression and presentation. For each peptide of the set of peptides for a tissue sample, a score can be determined using the machine-learning model and genomic and transcriptomic data corresponding to the peptide. The score is predictive of whether a corresponding peptide is a surface-presenting peptide that binds to an MHC molecule and is presented on a cell surface.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4168569A4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4168569A4</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4168569A43</originalsourceid><addsrcrecordid>eNrjZHDzdXT28PRz1fVxdQzy8_RzVwhxdfbw8wwMdQ1WcPMPUggIcnXxdA4ByQSHBrk5OrvqAoWCXf3AQgGuASGeLq7BPAysaYk5xam8UJqbQcHNNcTZQze1ID8-tbggMTk1L7Uk3jXAxNDMwtTM0tHEmAglAH00LFc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING TECHNIQUES FOR PREDICTING SURFACE-PRESENTING PEPTIDES</title><source>esp@cenet</source><creator>HAUDENSCHILD, Christian ; LEVY, Eric ; BARTHA, Gabor ; MILANI, Pamela ; SALDIVAR, Juan-Sebastian ; MCNITT, Paul ; HARRIS, Jason ; PYKE, Rachel, Marty ; CLARK, Michael ; ABBOTT, Charles, Wilbur, III ; MELLACHERUVU, Dattatreya ; CHEN, Richard ; TANDON, Prateek ; PHILLIPS, Nick ; ZHANG, Simo, V ; WEST, John ; MORRA, Massimo ; DESAI, Sejal ; MCCLORY, Rena ; POWER, Robert ; BOYLE, Sean, Michael</creator><creatorcontrib>HAUDENSCHILD, Christian ; LEVY, Eric ; BARTHA, Gabor ; MILANI, Pamela ; SALDIVAR, Juan-Sebastian ; MCNITT, Paul ; HARRIS, Jason ; PYKE, Rachel, Marty ; CLARK, Michael ; ABBOTT, Charles, Wilbur, III ; MELLACHERUVU, Dattatreya ; CHEN, Richard ; TANDON, Prateek ; PHILLIPS, Nick ; ZHANG, Simo, V ; WEST, John ; MORRA, Massimo ; DESAI, Sejal ; MCCLORY, Rena ; POWER, Robert ; BOYLE, Sean, Michael</creatorcontrib><description>The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression levels and the one or more peptide-presentation metrics are related in accordance with a population-level relationship between expression and presentation. For each peptide of the set of peptides for a tissue sample, a score can be determined using the machine-learning model and genomic and transcriptomic data corresponding to the peptide. The score is predictive of whether a corresponding peptide is a surface-presenting peptide that binds to an MHC molecule and is presented on a cell surface.</description><language>eng ; fre ; ger</language><subject>BEER ; BIOCHEMISTRY ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; COMPOSITIONS THEREOF ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; CULTURE MEDIA ; ENZYMOLOGY ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MICROORGANISMS OR ENZYMES ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS ; SPIRITS ; TESTING ; VINEGAR ; WINE</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240807&amp;DB=EPODOC&amp;CC=EP&amp;NR=4168569A4$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240807&amp;DB=EPODOC&amp;CC=EP&amp;NR=4168569A4$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAUDENSCHILD, Christian</creatorcontrib><creatorcontrib>LEVY, Eric</creatorcontrib><creatorcontrib>BARTHA, Gabor</creatorcontrib><creatorcontrib>MILANI, Pamela</creatorcontrib><creatorcontrib>SALDIVAR, Juan-Sebastian</creatorcontrib><creatorcontrib>MCNITT, Paul</creatorcontrib><creatorcontrib>HARRIS, Jason</creatorcontrib><creatorcontrib>PYKE, Rachel, Marty</creatorcontrib><creatorcontrib>CLARK, Michael</creatorcontrib><creatorcontrib>ABBOTT, Charles, Wilbur, III</creatorcontrib><creatorcontrib>MELLACHERUVU, Dattatreya</creatorcontrib><creatorcontrib>CHEN, Richard</creatorcontrib><creatorcontrib>TANDON, Prateek</creatorcontrib><creatorcontrib>PHILLIPS, Nick</creatorcontrib><creatorcontrib>ZHANG, Simo, V</creatorcontrib><creatorcontrib>WEST, John</creatorcontrib><creatorcontrib>MORRA, Massimo</creatorcontrib><creatorcontrib>DESAI, Sejal</creatorcontrib><creatorcontrib>MCCLORY, Rena</creatorcontrib><creatorcontrib>POWER, Robert</creatorcontrib><creatorcontrib>BOYLE, Sean, Michael</creatorcontrib><title>MACHINE-LEARNING TECHNIQUES FOR PREDICTING SURFACE-PRESENTING PEPTIDES</title><description>The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression levels and the one or more peptide-presentation metrics are related in accordance with a population-level relationship between expression and presentation. For each peptide of the set of peptides for a tissue sample, a score can be determined using the machine-learning model and genomic and transcriptomic data corresponding to the peptide. The score is predictive of whether a corresponding peptide is a surface-presenting peptide that binds to an MHC molecule and is presented on a cell surface.</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>COMPOSITIONS THEREOF</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>CULTURE MEDIA</subject><subject>ENZYMOLOGY</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MICROORGANISMS OR ENZYMES</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS</subject><subject>SPIRITS</subject><subject>TESTING</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDzdXT28PRz1fVxdQzy8_RzVwhxdfbw8wwMdQ1WcPMPUggIcnXxdA4ByQSHBrk5OrvqAoWCXf3AQgGuASGeLq7BPAysaYk5xam8UJqbQcHNNcTZQze1ID8-tbggMTk1L7Uk3jXAxNDMwtTM0tHEmAglAH00LFc</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>HAUDENSCHILD, Christian</creator><creator>LEVY, Eric</creator><creator>BARTHA, Gabor</creator><creator>MILANI, Pamela</creator><creator>SALDIVAR, Juan-Sebastian</creator><creator>MCNITT, Paul</creator><creator>HARRIS, Jason</creator><creator>PYKE, Rachel, Marty</creator><creator>CLARK, Michael</creator><creator>ABBOTT, Charles, Wilbur, III</creator><creator>MELLACHERUVU, Dattatreya</creator><creator>CHEN, Richard</creator><creator>TANDON, Prateek</creator><creator>PHILLIPS, Nick</creator><creator>ZHANG, Simo, V</creator><creator>WEST, John</creator><creator>MORRA, Massimo</creator><creator>DESAI, Sejal</creator><creator>MCCLORY, Rena</creator><creator>POWER, Robert</creator><creator>BOYLE, Sean, Michael</creator><scope>EVB</scope></search><sort><creationdate>20240807</creationdate><title>MACHINE-LEARNING TECHNIQUES FOR PREDICTING SURFACE-PRESENTING PEPTIDES</title><author>HAUDENSCHILD, Christian ; LEVY, Eric ; BARTHA, Gabor ; MILANI, Pamela ; SALDIVAR, Juan-Sebastian ; MCNITT, Paul ; HARRIS, Jason ; PYKE, Rachel, Marty ; CLARK, Michael ; ABBOTT, Charles, Wilbur, III ; MELLACHERUVU, Dattatreya ; CHEN, Richard ; TANDON, Prateek ; PHILLIPS, Nick ; ZHANG, Simo, V ; WEST, John ; MORRA, Massimo ; DESAI, Sejal ; MCCLORY, Rena ; POWER, Robert ; BOYLE, Sean, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4168569A43</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2024</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>COMPOSITIONS THEREOF</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>CULTURE MEDIA</topic><topic>ENZYMOLOGY</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MICROORGANISMS OR ENZYMES</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS</topic><topic>SPIRITS</topic><topic>TESTING</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>HAUDENSCHILD, Christian</creatorcontrib><creatorcontrib>LEVY, Eric</creatorcontrib><creatorcontrib>BARTHA, Gabor</creatorcontrib><creatorcontrib>MILANI, Pamela</creatorcontrib><creatorcontrib>SALDIVAR, Juan-Sebastian</creatorcontrib><creatorcontrib>MCNITT, Paul</creatorcontrib><creatorcontrib>HARRIS, Jason</creatorcontrib><creatorcontrib>PYKE, Rachel, Marty</creatorcontrib><creatorcontrib>CLARK, Michael</creatorcontrib><creatorcontrib>ABBOTT, Charles, Wilbur, III</creatorcontrib><creatorcontrib>MELLACHERUVU, Dattatreya</creatorcontrib><creatorcontrib>CHEN, Richard</creatorcontrib><creatorcontrib>TANDON, Prateek</creatorcontrib><creatorcontrib>PHILLIPS, Nick</creatorcontrib><creatorcontrib>ZHANG, Simo, V</creatorcontrib><creatorcontrib>WEST, John</creatorcontrib><creatorcontrib>MORRA, Massimo</creatorcontrib><creatorcontrib>DESAI, Sejal</creatorcontrib><creatorcontrib>MCCLORY, Rena</creatorcontrib><creatorcontrib>POWER, Robert</creatorcontrib><creatorcontrib>BOYLE, Sean, Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAUDENSCHILD, Christian</au><au>LEVY, Eric</au><au>BARTHA, Gabor</au><au>MILANI, Pamela</au><au>SALDIVAR, Juan-Sebastian</au><au>MCNITT, Paul</au><au>HARRIS, Jason</au><au>PYKE, Rachel, Marty</au><au>CLARK, Michael</au><au>ABBOTT, Charles, Wilbur, III</au><au>MELLACHERUVU, Dattatreya</au><au>CHEN, Richard</au><au>TANDON, Prateek</au><au>PHILLIPS, Nick</au><au>ZHANG, Simo, V</au><au>WEST, John</au><au>MORRA, Massimo</au><au>DESAI, Sejal</au><au>MCCLORY, Rena</au><au>POWER, Robert</au><au>BOYLE, Sean, Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING TECHNIQUES FOR PREDICTING SURFACE-PRESENTING PEPTIDES</title><date>2024-08-07</date><risdate>2024</risdate><abstract>The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression levels and the one or more peptide-presentation metrics are related in accordance with a population-level relationship between expression and presentation. For each peptide of the set of peptides for a tissue sample, a score can be determined using the machine-learning model and genomic and transcriptomic data corresponding to the peptide. The score is predictive of whether a corresponding peptide is a surface-presenting peptide that binds to an MHC molecule and is presented on a cell surface.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP4168569A4
source esp@cenet
subjects BEER
BIOCHEMISTRY
CHEMISTRY
COMPOSITIONS OR TEST PAPERS THEREFOR
COMPOSITIONS THEREOF
CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES
CULTURE MEDIA
ENZYMOLOGY
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS
METALLURGY
MICROBIOLOGY
MICROORGANISMS OR ENZYMES
MUTATION OR GENETIC ENGINEERING
PHYSICS
PROCESSES OF PREPARING SUCH COMPOSITIONS
PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS
SPIRITS
TESTING
VINEGAR
WINE
title MACHINE-LEARNING TECHNIQUES FOR PREDICTING SURFACE-PRESENTING PEPTIDES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAUDENSCHILD,%20Christian&rft.date=2024-08-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4168569A4%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true