MACHINE-LEARNING TECHNIQUES FOR PREDICTING SURFACE-PRESENTING PEPTIDES
The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression l...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The disclosure provides methods for predicting surface-presenting peptides using binding and surface-presentation characteristics. The method can include accessing a trained machine-learning model that is configured to generate an output that indicates an extent to which the one or more expression levels and the one or more peptide-presentation metrics are related in accordance with a population-level relationship between expression and presentation. For each peptide of the set of peptides for a tissue sample, a score can be determined using the machine-learning model and genomic and transcriptomic data corresponding to the peptide. The score is predictive of whether a corresponding peptide is a surface-presenting peptide that binds to an MHC molecule and is presented on a cell surface. |
---|