PREDICTING DISEASE OUTCOMES USING MACHINE LEARNED MODELS
Embodiments of the disclosure include implementing a ML-enabled cellular disease model for validating an intervention, identifying patient populations that are likely responders to an intervention, and developing a therapeutic structure-activity relationship screen. To generate a cellular disease mo...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SALICK, Max, R KOLLER, Daphne KAYKAS, Ajamete STANITSAS, Panagiotis Dimitrios SHARON, Eilon RIESSELMAN, Adam, Joseph KATEGAYA, Lorn COTTA-RAMUSINO, Cecilia, Giovanna, Silvia CASALE, Francesco Paolo SULTAN, Mohammad Muneeb PALMEDO, Peter, Franklin, Jr |
description | Embodiments of the disclosure include implementing a ML-enabled cellular disease model for validating an intervention, identifying patient populations that are likely responders to an intervention, and developing a therapeutic structure-activity relationship screen. To generate a cellular disease model, data is combined from human genetic cohorts, from the literature, and from general-purpose cellular or tissue-level genomic data to unravel the set of factors (e.g., genetic, environmental, cellular factors) that give rise to a particular disease. In vitro cells are engineered using the set of factors to generate training data for training machine learning models that are useful for implementing cellular disease models. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4153782A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4153782A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4153782A13</originalsourceid><addsrcrecordid>eNrjZLAICHJ18XQO8fRzV3DxDHZ1DHZV8A8Ncfb3dQ1WCA0GCfs6Ont4-rkq-Lg6Bvm5uij4-ru4-gTzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATQ1NjcwsjR0NjIpQAABgRKBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTING DISEASE OUTCOMES USING MACHINE LEARNED MODELS</title><source>esp@cenet</source><creator>SALICK, Max, R ; KOLLER, Daphne ; KAYKAS, Ajamete ; STANITSAS, Panagiotis Dimitrios ; SHARON, Eilon ; RIESSELMAN, Adam, Joseph ; KATEGAYA, Lorn ; COTTA-RAMUSINO, Cecilia, Giovanna, Silvia ; CASALE, Francesco Paolo ; SULTAN, Mohammad Muneeb ; PALMEDO, Peter, Franklin, Jr</creator><creatorcontrib>SALICK, Max, R ; KOLLER, Daphne ; KAYKAS, Ajamete ; STANITSAS, Panagiotis Dimitrios ; SHARON, Eilon ; RIESSELMAN, Adam, Joseph ; KATEGAYA, Lorn ; COTTA-RAMUSINO, Cecilia, Giovanna, Silvia ; CASALE, Francesco Paolo ; SULTAN, Mohammad Muneeb ; PALMEDO, Peter, Franklin, Jr</creatorcontrib><description>Embodiments of the disclosure include implementing a ML-enabled cellular disease model for validating an intervention, identifying patient populations that are likely responders to an intervention, and developing a therapeutic structure-activity relationship screen. To generate a cellular disease model, data is combined from human genetic cohorts, from the literature, and from general-purpose cellular or tissue-level genomic data to unravel the set of factors (e.g., genetic, environmental, cellular factors) that give rise to a particular disease. In vitro cells are engineered using the set of factors to generate training data for training machine learning models that are useful for implementing cellular disease models.</description><language>eng ; fre ; ger</language><subject>BEER ; BIOCHEMISTRY ; CHEMISTRY ; COMPOSITIONS OR TEST PAPERS THEREFOR ; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ; ENZYMOLOGY ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS ; METALLURGY ; MICROBIOLOGY ; MUTATION OR GENETIC ENGINEERING ; PHYSICS ; PROCESSES OF PREPARING SUCH COMPOSITIONS ; SPIRITS ; VINEGAR ; WINE</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230329&DB=EPODOC&CC=EP&NR=4153782A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230329&DB=EPODOC&CC=EP&NR=4153782A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SALICK, Max, R</creatorcontrib><creatorcontrib>KOLLER, Daphne</creatorcontrib><creatorcontrib>KAYKAS, Ajamete</creatorcontrib><creatorcontrib>STANITSAS, Panagiotis Dimitrios</creatorcontrib><creatorcontrib>SHARON, Eilon</creatorcontrib><creatorcontrib>RIESSELMAN, Adam, Joseph</creatorcontrib><creatorcontrib>KATEGAYA, Lorn</creatorcontrib><creatorcontrib>COTTA-RAMUSINO, Cecilia, Giovanna, Silvia</creatorcontrib><creatorcontrib>CASALE, Francesco Paolo</creatorcontrib><creatorcontrib>SULTAN, Mohammad Muneeb</creatorcontrib><creatorcontrib>PALMEDO, Peter, Franklin, Jr</creatorcontrib><title>PREDICTING DISEASE OUTCOMES USING MACHINE LEARNED MODELS</title><description>Embodiments of the disclosure include implementing a ML-enabled cellular disease model for validating an intervention, identifying patient populations that are likely responders to an intervention, and developing a therapeutic structure-activity relationship screen. To generate a cellular disease model, data is combined from human genetic cohorts, from the literature, and from general-purpose cellular or tissue-level genomic data to unravel the set of factors (e.g., genetic, environmental, cellular factors) that give rise to a particular disease. In vitro cells are engineered using the set of factors to generate training data for training machine learning models that are useful for implementing cellular disease models.</description><subject>BEER</subject><subject>BIOCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS OR TEST PAPERS THEREFOR</subject><subject>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</subject><subject>ENZYMOLOGY</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</subject><subject>METALLURGY</subject><subject>MICROBIOLOGY</subject><subject>MUTATION OR GENETIC ENGINEERING</subject><subject>PHYSICS</subject><subject>PROCESSES OF PREPARING SUCH COMPOSITIONS</subject><subject>SPIRITS</subject><subject>VINEGAR</subject><subject>WINE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAICHJ18XQO8fRzV3DxDHZ1DHZV8A8Ncfb3dQ1WCA0GCfs6Ont4-rkq-Lg6Bvm5uij4-ru4-gTzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JJ41wATQ1NjcwsjR0NjIpQAABgRKBM</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>SALICK, Max, R</creator><creator>KOLLER, Daphne</creator><creator>KAYKAS, Ajamete</creator><creator>STANITSAS, Panagiotis Dimitrios</creator><creator>SHARON, Eilon</creator><creator>RIESSELMAN, Adam, Joseph</creator><creator>KATEGAYA, Lorn</creator><creator>COTTA-RAMUSINO, Cecilia, Giovanna, Silvia</creator><creator>CASALE, Francesco Paolo</creator><creator>SULTAN, Mohammad Muneeb</creator><creator>PALMEDO, Peter, Franklin, Jr</creator><scope>EVB</scope></search><sort><creationdate>20230329</creationdate><title>PREDICTING DISEASE OUTCOMES USING MACHINE LEARNED MODELS</title><author>SALICK, Max, R ; KOLLER, Daphne ; KAYKAS, Ajamete ; STANITSAS, Panagiotis Dimitrios ; SHARON, Eilon ; RIESSELMAN, Adam, Joseph ; KATEGAYA, Lorn ; COTTA-RAMUSINO, Cecilia, Giovanna, Silvia ; CASALE, Francesco Paolo ; SULTAN, Mohammad Muneeb ; PALMEDO, Peter, Franklin, Jr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4153782A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>BEER</topic><topic>BIOCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS OR TEST PAPERS THEREFOR</topic><topic>CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES</topic><topic>ENZYMOLOGY</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS</topic><topic>METALLURGY</topic><topic>MICROBIOLOGY</topic><topic>MUTATION OR GENETIC ENGINEERING</topic><topic>PHYSICS</topic><topic>PROCESSES OF PREPARING SUCH COMPOSITIONS</topic><topic>SPIRITS</topic><topic>VINEGAR</topic><topic>WINE</topic><toplevel>online_resources</toplevel><creatorcontrib>SALICK, Max, R</creatorcontrib><creatorcontrib>KOLLER, Daphne</creatorcontrib><creatorcontrib>KAYKAS, Ajamete</creatorcontrib><creatorcontrib>STANITSAS, Panagiotis Dimitrios</creatorcontrib><creatorcontrib>SHARON, Eilon</creatorcontrib><creatorcontrib>RIESSELMAN, Adam, Joseph</creatorcontrib><creatorcontrib>KATEGAYA, Lorn</creatorcontrib><creatorcontrib>COTTA-RAMUSINO, Cecilia, Giovanna, Silvia</creatorcontrib><creatorcontrib>CASALE, Francesco Paolo</creatorcontrib><creatorcontrib>SULTAN, Mohammad Muneeb</creatorcontrib><creatorcontrib>PALMEDO, Peter, Franklin, Jr</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SALICK, Max, R</au><au>KOLLER, Daphne</au><au>KAYKAS, Ajamete</au><au>STANITSAS, Panagiotis Dimitrios</au><au>SHARON, Eilon</au><au>RIESSELMAN, Adam, Joseph</au><au>KATEGAYA, Lorn</au><au>COTTA-RAMUSINO, Cecilia, Giovanna, Silvia</au><au>CASALE, Francesco Paolo</au><au>SULTAN, Mohammad Muneeb</au><au>PALMEDO, Peter, Franklin, Jr</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTING DISEASE OUTCOMES USING MACHINE LEARNED MODELS</title><date>2023-03-29</date><risdate>2023</risdate><abstract>Embodiments of the disclosure include implementing a ML-enabled cellular disease model for validating an intervention, identifying patient populations that are likely responders to an intervention, and developing a therapeutic structure-activity relationship screen. To generate a cellular disease model, data is combined from human genetic cohorts, from the literature, and from general-purpose cellular or tissue-level genomic data to unravel the set of factors (e.g., genetic, environmental, cellular factors) that give rise to a particular disease. In vitro cells are engineered using the set of factors to generate training data for training machine learning models that are useful for implementing cellular disease models.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4153782A1 |
source | esp@cenet |
subjects | BEER BIOCHEMISTRY CHEMISTRY COMPOSITIONS OR TEST PAPERS THEREFOR CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL ORENZYMOLOGICAL PROCESSES ENZYMOLOGY HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEICACIDS OR MICROORGANISMS METALLURGY MICROBIOLOGY MUTATION OR GENETIC ENGINEERING PHYSICS PROCESSES OF PREPARING SUCH COMPOSITIONS SPIRITS VINEGAR WINE |
title | PREDICTING DISEASE OUTCOMES USING MACHINE LEARNED MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SALICK,%20Max,%20R&rft.date=2023-03-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4153782A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |