CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION
A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the variables of the input vector into a plurality of latent vectors; inputting the plurality of latent vectors into a second neural network comprising a graph n...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LAMB, Angus, James ZHANG, Cheng MORALES- ÁLVAREZ, Pablo ALLAMANIS, Miltiadis PEYTON JONES, Simon, Loftus |
description | A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the variables of the input vector into a plurality of latent vectors; inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables, in order to determine a computed vector value; and tuning the edge probabilities of the graph, one or more parameters of the first neural network and one or more parameters of the second neural network to minimise a loss function, wherein the loss function comprises a measure of difference between the input vector and the computed vector value and a function of the graph. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP4123509A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP4123509A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP4123509A13</originalsourceid><addsrcrecordid>eNrjZNB1dgwNdvRRcPEMdvYPcw2KVHD0c1Hw9QwO9vRzVwhz9Al1VfD0DQgNcQzx9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmhkbGpgaWjobGRCgBAIKGJTE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><source>esp@cenet</source><creator>LAMB, Angus, James ; ZHANG, Cheng ; MORALES- ÁLVAREZ, Pablo ; ALLAMANIS, Miltiadis ; PEYTON JONES, Simon, Loftus</creator><creatorcontrib>LAMB, Angus, James ; ZHANG, Cheng ; MORALES- ÁLVAREZ, Pablo ; ALLAMANIS, Miltiadis ; PEYTON JONES, Simon, Loftus</creatorcontrib><description>A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the variables of the input vector into a plurality of latent vectors; inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables, in order to determine a computed vector value; and tuning the edge probabilities of the graph, one or more parameters of the first neural network and one or more parameters of the second neural network to minimise a loss function, wherein the loss function comprises a measure of difference between the input vector and the computed vector value and a function of the graph.</description><language>eng ; fre ; ger</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230125&DB=EPODOC&CC=EP&NR=4123509A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230125&DB=EPODOC&CC=EP&NR=4123509A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LAMB, Angus, James</creatorcontrib><creatorcontrib>ZHANG, Cheng</creatorcontrib><creatorcontrib>MORALES- ÁLVAREZ, Pablo</creatorcontrib><creatorcontrib>ALLAMANIS, Miltiadis</creatorcontrib><creatorcontrib>PEYTON JONES, Simon, Loftus</creatorcontrib><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><description>A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the variables of the input vector into a plurality of latent vectors; inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables, in order to determine a computed vector value; and tuning the edge probabilities of the graph, one or more parameters of the first neural network and one or more parameters of the second neural network to minimise a loss function, wherein the loss function comprises a measure of difference between the input vector and the computed vector value and a function of the graph.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB1dgwNdvRRcPEMdvYPcw2KVHD0c1Hw9QwO9vRzVwhz9Al1VfD0DQgNcQzx9PfjYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmhkbGpgaWjobGRCgBAIKGJTE</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>LAMB, Angus, James</creator><creator>ZHANG, Cheng</creator><creator>MORALES- ÁLVAREZ, Pablo</creator><creator>ALLAMANIS, Miltiadis</creator><creator>PEYTON JONES, Simon, Loftus</creator><scope>EVB</scope></search><sort><creationdate>20230125</creationdate><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><author>LAMB, Angus, James ; ZHANG, Cheng ; MORALES- ÁLVAREZ, Pablo ; ALLAMANIS, Miltiadis ; PEYTON JONES, Simon, Loftus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP4123509A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LAMB, Angus, James</creatorcontrib><creatorcontrib>ZHANG, Cheng</creatorcontrib><creatorcontrib>MORALES- ÁLVAREZ, Pablo</creatorcontrib><creatorcontrib>ALLAMANIS, Miltiadis</creatorcontrib><creatorcontrib>PEYTON JONES, Simon, Loftus</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LAMB, Angus, James</au><au>ZHANG, Cheng</au><au>MORALES- ÁLVAREZ, Pablo</au><au>ALLAMANIS, Miltiadis</au><au>PEYTON JONES, Simon, Loftus</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION</title><date>2023-01-25</date><risdate>2023</risdate><abstract>A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the variables of the input vector into a plurality of latent vectors; inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables, in order to determine a computed vector value; and tuning the edge probabilities of the graph, one or more parameters of the first neural network and one or more parameters of the second neural network to minimise a loss function, wherein the loss function comprises a measure of difference between the input vector and the computed vector value and a function of the graph.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre ; ger |
recordid | cdi_epo_espacenet_EP4123509A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LAMB,%20Angus,%20James&rft.date=2023-01-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP4123509A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |