CAUSAL DISCOVERY AND MISSING VALUE IMPUTATION

A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the variables of the input vector into a plurality of latent vectors; inputting the plurality of latent vectors into a second neural network comprising a graph n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LAMB, Angus, James, ZHANG, Cheng, MORALES- ÁLVAREZ, Pablo, ALLAMANIS, Miltiadis, PEYTON JONES, Simon, Loftus
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computer-implemented method comprising: receiving an input vector comprising values of variables; using a first neural network to encode the variables of the input vector into a plurality of latent vectors; inputting the plurality of latent vectors into a second neural network comprising a graph neural network, wherein the graph neural network is parametrized by a graph comprising edge probabilities indicating causal relationships between the variables, in order to determine a computed vector value; and tuning the edge probabilities of the graph, one or more parameters of the first neural network and one or more parameters of the second neural network to minimise a loss function, wherein the loss function comprises a measure of difference between the input vector and the computed vector value and a function of the graph.