GENERATING NEW VIEWS WITH DEEP NEURAL NETWORKS FROM UNSTRUCTURED INPUT

Systems, apparatuses and methods may provide for technology that estimates poses of a plurality of input images, reconstructs a proxy three-dimensional (3D) geometry based on the estimated poses and the plurality of input images, detects a user selection of a virtual viewpoint, encodes, via a first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Riegler, Gernot, Koltun, Vladlen
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systems, apparatuses and methods may provide for technology that estimates poses of a plurality of input images, reconstructs a proxy three-dimensional (3D) geometry based on the estimated poses and the plurality of input images, detects a user selection of a virtual viewpoint, encodes, via a first neural network, the plurality of input images with feature maps, warps the feature maps of the encoded plurality of input images based on the virtual viewpoint and the proxy 3D geometry, and blends, via a second neural network, the warped feature maps into a single image, wherein the first neural network is deep convolutional network and the second neural network is a recurrent convolutional network.