A MODEL-AGNOSTIC APPROACH TO INTERPRETING SEQUENCE PREDICTIONS
A series of sequential inputs and a prediction output of a machine learning model, to be analyzed for interpreting the prediction output, are received. An input included in the series of sequential inputs is selected to be analyzed for relevance in producing the prediction output. Background data fo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of sequential inputs and a prediction output of a machine learning model, to be analyzed for interpreting the prediction output, are received. An input included in the series of sequential inputs is selected to be analyzed for relevance in producing the prediction output. Background data for the selected input of the series of sequential inputs to be analyzed is determined. The background data is used as a replacement for the selected input of the series of sequential inputs to determine a plurality of perturbed prediction outputs of the machine learning model. A relevance metric is determined for the selected input based at least in part on the plurality of perturbed prediction outputs of the machine learning model. |
---|