COMPUTER VISION TRANSACTION MONITORING
A machine-learning algorithm is trained on images with a set of diverse items to produce as output feature vectors in a feature-vector space derived for the set. New item images for new items are passed to the algorithm and new feature vectors are projected into the vector space. A classifier for ea...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A machine-learning algorithm is trained on images with a set of diverse items to produce as output feature vectors in a feature-vector space derived for the set. New item images for new items are passed to the algorithm and new feature vectors are projected into the vector space. A classifier for each new item is trained on the new feature vectors to determine whether the new item is new item or is not that new item. During a transaction, an item code scanned for an item and an item image are obtained. The item image is passed to the algorithm, a feature vector is obtained, a corresponding classifier for the item code is retrieved, the feature vector is passed to the classifier, and a determination is provided as to whether the item image and item code matches a specific item that should be associated with the item code. |
---|