COMPUTER VISION TRANSACTION MONITORING

A machine-learning algorithm is trained on images with a set of diverse items to produce as output feature vectors in a feature-vector space derived for the set. New item images for new items are passed to the algorithm and new feature vectors are projected into the vector space. A classifier for ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HEMMATIYAN, Shayan, MIGDAL, Joshua
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A machine-learning algorithm is trained on images with a set of diverse items to produce as output feature vectors in a feature-vector space derived for the set. New item images for new items are passed to the algorithm and new feature vectors are projected into the vector space. A classifier for each new item is trained on the new feature vectors to determine whether the new item is new item or is not that new item. During a transaction, an item code scanned for an item and an item image are obtained. The item image is passed to the algorithm, a feature vector is obtained, a corresponding classifier for the item code is retrieved, the feature vector is passed to the classifier, and a determination is provided as to whether the item image and item code matches a specific item that should be associated with the item code.