PRINTABLE MAGNETIC POWDERS AND 3D PRINTED OBJECTS FOR BIONANOCATALYST IMMOBILIZATION

The invention provides materials, and in particular, magnetic materials, for the universal immobilization of enzymes and enzyme systems. Described herein are highly magnetic and highly porous composite blends of thermoplastics with magnetic particles to form powders, single-layered, or multiple-laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WONG, Braedon Carter, SANKTJOHANSER, Maximilian Josef, RIVERA, Katia Argelia Rodriguez, CHUN, Matthew Stephen, CORGIE, Stephane Cedric
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention provides materials, and in particular, magnetic materials, for the universal immobilization of enzymes and enzyme systems. Described herein are highly magnetic and highly porous composite blends of thermoplastics with magnetic particles to form powders, single-layered, or multiple-layered materials that are used as scaffolds for magnetically immobilized enzymes known as bionanocatalysts (BNCs). Designed objects are produced using 3D printing by sintering composite magnetic powders. In some embodiments, Selective Laser Sintering (SLS) is used. The invention provides the use of the material compositions for 3D printing of enzyme supports and flow cells allowing continuous production of, e.g., small molecules.