UNSUPERVISED LEARNING OF SEMANTIC AUDIO REPRESENTATIONS

Methods are provided for generating training triplets that can be used to train multidimensional embeddings to represent the semantic content of non-speech sounds present in a corpus of audio recordings. These training triplets can be used with a triplet loss function to train the multidimensional e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ELLIS, Daniel, JANSEN, Aren, MOORE, Richard, Channing, PLAKAL, Manoj, PANDYA, Ratheet, LIU, Jiayang, RIFKIN, Ryan, HERSHEY, Shawn
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods are provided for generating training triplets that can be used to train multidimensional embeddings to represent the semantic content of non-speech sounds present in a corpus of audio recordings. These training triplets can be used with a triplet loss function to train the multidimensional embeddings such that the embeddings can be used to cluster the contents of a corpus of audio recordings, to facilitate a query-by-example lookup from the corpus, to allow a small number of manually-labeled audio recordings to be generalized, or to facilitate some other audio classification task. The triplet sampling methods may be used individually or collectively, and each represent a respective heuristic about the semantic structure of audio recordings.