THREE-DIMENSIONAL (3D) CONVOLUTION WITH 3D BATCH NORMALIZATION

The technology disclosed uses a 3D deep convolutional neural network architecture (DCNNA) equipped with so-called subnetwork modules which perform dimensionality reduction operations on 3D radiological volume before the 3D radiological volume is subjected to computationally expensive operations. Als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIONG, Caiming, TAI, Kai Sheng, SOCHER, Richard
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The technology disclosed uses a 3D deep convolutional neural network architecture (DCNNA) equipped with so-called subnetwork modules which perform dimensionality reduction operations on 3D radiological volume before the 3D radiological volume is subjected to computationally expensive operations. Also, the subnetworks convolve 3D data at multiple scales by subjecting the 3D data to parallel processing by different 3D convolutional layer paths. Such multi-scale operations are computationally cheaper than the traditional CNNs that perform serial convolutions. In addition, performance of the subnetworks is further improved through 3D batch normalization (BN) that normalizes the 3D input fed to the subnetworks, which in turn increases learning rates of the 3D DCNNA. After several layers of 3D convolution and 3D subsampling with 3D across a series of subnetwork modules, a feature map with reduced vertical dimensionality is generated from the 3D radiological volume and fed into one or more fully connected layers.