IN VIVO SYNTHESIS OF SIALYLATED COMPOUNDS

This disclosure is in the technical field of synthetic biology and metabolic engineering. More particularly, this disclosure is in the technical field of fermentation of metabolically engineered microorganisms. This disclosure describes engineered micro-organisms able to synthesize sialylated compou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: VERCAUTEREN, Annelies, VAN HERPE, Dries, BEAUPREZ, Joeri, PETERS, Gert, COUSSEMENT, Pieter
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This disclosure is in the technical field of synthetic biology and metabolic engineering. More particularly, this disclosure is in the technical field of fermentation of metabolically engineered microorganisms. This disclosure describes engineered micro-organisms able to synthesize sialylated compounds via an intracellular biosynthesis route. These micro-organisms can dephosphorylate N-acetylglucosamine-6-phosphate to N-acetyl glucosamine and convert the N-acetylglucosamine to N-acetylmannosamine. These micro-organisms also have the ability to convert N-acetylmannosamine to N-acetyl-neuraminate. Furthermore, this disclosure provides a method for the large scale in vivo synthesis of sialylated compounds, by culturing a microorganism in a culture medium, optionally comprising an exogenous precursor such as, but not limited to lactose, lactoNbiose, N-acetyllactosamine and/or an aglycon, wherein the microorganism intracellularly dephosphorylates N-acetylglucosamine-6-phosphate to N-acetylglucosamine, converts N-acetylglucosamine to N-acetylmannosamine and convert the latter further to N-acetyl-neuraminate.