OBJECT CLASSIFICATION IN IMAGE DATA USING MACHINE LEARNING MODELS
Combined color and depth data for a field of view is received. Thereafter, using at least one bounding polygon algorithm, at least one proposed bounding polygon is defined for the field of view. It can then be determined, using a binary classifier having at least one machine learning model trained u...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combined color and depth data for a field of view is received. Thereafter, using at least one bounding polygon algorithm, at least one proposed bounding polygon is defined for the field of view. It can then be determined, using a binary classifier having at least one machine learning model trained using a plurality of images of known objects, whether each proposed bounding polygon encapsulates an object. The image data within each bounding polygon that is determined to encapsulate an object can then be provided to a first object classifier having at least one machine learning model trained using a plurality of images of known objects, to classify the object encapsulated within the respective bounding polygon. Further, the image data within each bounding polygon that is determined to encapsulate an object is provided to a second object classifier having at least one machine learning model trained using a plurality of images of known objects, to classify the object encapsulated within the respective bounding polygon. A final classification for each bounding polygon is then determined based on the output of the first classifier machine learning model and the output of the second classifier machine learning model. |
---|