ENTITY RESOLUTION INCORPORATING DATA FROM VARIOUS DATA SOURCES
A pair of records is tokenized to form a normalized representation of an entity represented by each record. The tokens are correlated to a machine learning system by determining whether a learned resolution already exists for the two entities. If not, the normalized records are compared to generate...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre ; ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A pair of records is tokenized to form a normalized representation of an entity represented by each record. The tokens are correlated to a machine learning system by determining whether a learned resolution already exists for the two entities. If not, the normalized records are compared to generate a comparison measure to determine whether the records match. The normalized records can also be used to perform a web search and web search results can be normalized and used as additional records for matching. When a match is found, the records are updated to indicate that they match, and the match is provided to the machine learning system to update the learned resolutions. |
---|