GAS ENCLOSURE SYSTEMS AND METHODS UTILIZING CROSS-FLOW GAS CIRCULATION AND FILTRATION

The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: VRONSKY, Eliyahu, IYENGAR, Prahallad, PUN, Digby, KO, Alexander Sou-Kang, MAUCK, Justin
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices. Accordingly, various embodiments of a gas circulation and filtration system as disclosed herein can effectively remove both airborne particulate matter, as well as particulate matter generated proximal to a substrate during a printing process. As such, various embodiments of a gas circulation and filtration system in conjunction with various embodiments of a gas purification system of the present teachings can provide for a controlled manufacturing environment resulting in a high-yield of OLED various devices.