RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION

Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GREGOR, Karol, DANIHELKA, Ivo
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GREGOR, Karol
DANIHELKA, Ivo
description Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hidden state vector for the preceding time step for processing, receiving, as output from the encoder, a generated encoder hidden state vector for the time step, generating a decoder input from the generated encoder hidden state vector, providing the decoder input to the decoder for processing, receiving, as output from the decoder, a generated a decoder hidden state vector for the time step, generating a neural network output update from the decoder hidden state vector for the time step, and combining the neural network output update with a current neural network output to generate an updated neural network output.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_EP3054403B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EP3054403B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_EP3054403B13</originalsourceid><addsrcrecordid>eNrjZDAKcnUODQpy9QtR8HMNDXL0AVIh4f5B3sEKbv5BCi6OIY4KniGuvgrurn6uQY4hnv5-PAysaYk5xam8UJqbQcHNNcTZQze1ID8-tbggMTk1L7Uk3jXA2MDUxMTA2MnQmAglAECGJoM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION</title><source>esp@cenet</source><creator>GREGOR, Karol ; DANIHELKA, Ivo</creator><creatorcontrib>GREGOR, Karol ; DANIHELKA, Ivo</creatorcontrib><description>Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hidden state vector for the preceding time step for processing, receiving, as output from the encoder, a generated encoder hidden state vector for the time step, generating a decoder input from the generated encoder hidden state vector, providing the decoder input to the decoder for processing, receiving, as output from the decoder, a generated a decoder hidden state vector for the time step, generating a neural network output update from the decoder hidden state vector for the time step, and combining the neural network output update with a current neural network output to generate an updated neural network output.</description><language>eng ; fre ; ger</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180131&amp;DB=EPODOC&amp;CC=EP&amp;NR=3054403B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180131&amp;DB=EPODOC&amp;CC=EP&amp;NR=3054403B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GREGOR, Karol</creatorcontrib><creatorcontrib>DANIHELKA, Ivo</creatorcontrib><title>RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION</title><description>Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hidden state vector for the preceding time step for processing, receiving, as output from the encoder, a generated encoder hidden state vector for the time step, generating a decoder input from the generated encoder hidden state vector, providing the decoder input to the decoder for processing, receiving, as output from the decoder, a generated a decoder hidden state vector for the time step, generating a neural network output update from the decoder hidden state vector for the time step, and combining the neural network output update with a current neural network output to generate an updated neural network output.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAKcnUODQpy9QtR8HMNDXL0AVIh4f5B3sEKbv5BCi6OIY4KniGuvgrurn6uQY4hnv5-PAysaYk5xam8UJqbQcHNNcTZQze1ID8-tbggMTk1L7Uk3jXA2MDUxMTA2MnQmAglAECGJoM</recordid><startdate>20180131</startdate><enddate>20180131</enddate><creator>GREGOR, Karol</creator><creator>DANIHELKA, Ivo</creator><scope>EVB</scope></search><sort><creationdate>20180131</creationdate><title>RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION</title><author>GREGOR, Karol ; DANIHELKA, Ivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_EP3054403B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; ger</language><creationdate>2018</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>GREGOR, Karol</creatorcontrib><creatorcontrib>DANIHELKA, Ivo</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GREGOR, Karol</au><au>DANIHELKA, Ivo</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION</title><date>2018-01-31</date><risdate>2018</risdate><abstract>Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hidden state vector for the preceding time step for processing, receiving, as output from the encoder, a generated encoder hidden state vector for the time step, generating a decoder input from the generated encoder hidden state vector, providing the decoder input to the decoder for processing, receiving, as output from the decoder, a generated a decoder hidden state vector for the time step, generating a neural network output update from the decoder hidden state vector for the time step, and combining the neural network output update with a current neural network output to generate an updated neural network output.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; ger
recordid cdi_epo_espacenet_EP3054403B1
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GREGOR,%20Karol&rft.date=2018-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EEP3054403B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true