RECURRENT NEURAL NETWORKS FOR DATA ITEM GENERATION

Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GREGOR, Karol, DANIHELKA, Ivo
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods, and systems, including computer programs encoded on computer storage media for generating data items. A method includes reading a glimpse from a data item using a decoder hidden state vector of a decoder for a preceding time step, providing, as input to a encoder, the glimpse and decoder hidden state vector for the preceding time step for processing, receiving, as output from the encoder, a generated encoder hidden state vector for the time step, generating a decoder input from the generated encoder hidden state vector, providing the decoder input to the decoder for processing, receiving, as output from the decoder, a generated a decoder hidden state vector for the time step, generating a neural network output update from the decoder hidden state vector for the time step, and combining the neural network output update with a current neural network output to generate an updated neural network output.