GRANULAR METAL IRON PRODUCTION METHOD

The present invention provides a method for producing a granular metallic iron in which an adhesion inhibitor leveler, an agglomerate leveler, a discharger, and the physical state of materials present on the hearth are optimized to thereby enable agglomerate to be spread in a single layer. The agglo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TSUGE, OSAMU, HASHIMOTO, SUMITO, MISAWA, RYOTA
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention provides a method for producing a granular metallic iron in which an adhesion inhibitor leveler, an agglomerate leveler, a discharger, and the physical state of materials present on the hearth are optimized to thereby enable agglomerate to be spread in a single layer. The agglomerate hence is evenly heat-treated to enable high-quality granular metallic iron to be produced in satisfactory yield. The present invention relates to a method for producing a granular metallic iron, which comprises leveling an adhesion inhibitor fed to the hearth of a moving-bed type hearth reducing melting furnace, feeding an agglomerate including an iron oxide-containing material and a carbonaceous reducing agent onto the adhesion inhibitor, leveling the agglomerate fed onto the adhesion inhibitor, subsequently heating the agglomerate to reduce and melt the iron oxide contained in the agglomerate to produce a granular metallic iron, and discharging the produced granular metallic iron using a screw type discharger, wherein the adhesion inhibitor fed to the hearth is evenly leveled using a screw type adhesion inhibitor leveler so that the leveled adhesion inhibitor has a flatness of 40% or less of an average particle diameter of the agglomerate, and the agglomerate fed onto the adhesion inhibitor is evenly laid using a screw type agglomerate leveler so that the agglomerate forms a single layer.