DENSITY BASED CLUSTERING FOR MULTIDIMENSIONAL DATA

A new density based clustering method for clustering data points in multidimensional space is described. Each point has a neighborhood consisting of all points that are within a preset cutoff radius or distance. Each point is assigned a density measure based on the number of points in its neighborho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: RODINGER, TOMAS, LARIO, PAULA I
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new density based clustering method for clustering data points in multidimensional space is described. Each point has a neighborhood consisting of all points that are within a preset cutoff radius or distance. Each point is assigned a density measure based on the number of points in its neighborhood. Any point that has a higher density than any of its neighboring points is the center of a cluster and is assigned a unique cluster ID. Every other point follows a path through the graph of neighboring points such that density is increasing as fast as possible until a cluster center is reached. The algorithm's performance is demonstrated on a one-dimensional, two-dimensional, and 18-dimensional dataset.