Solar cell with pigmented dielectric reflector

The wafer-based solar cell comprises a front electrode layer (2), a photovoltaic active absorber layer (3), a back electrode layer (4) and/or a pigmented dielectric reflector (5), which has a refractive index curve with two different refractive indexes vertical to function layers, where the first re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAGEMANN, VOLKER, BERGINSKI, MICHAEL, LECHNER, PETER, BOCKMEYER, MATTHIAS
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The wafer-based solar cell comprises a front electrode layer (2), a photovoltaic active absorber layer (3), a back electrode layer (4) and/or a pigmented dielectric reflector (5), which has a refractive index curve with two different refractive indexes vertical to function layers, where the first refractive index is greater than the second refractive index. The back electrode layer is formed through a transparent conductive oxide (TCO)-layer with refractive index and the maximum refractive index of the dielectric reflector corresponds to the refractive index of the TCO-layer. The wafer-based solar cell comprises a front electrode layer (2), a photovoltaic active absorber layer (3), a back electrode layer (4) and/or a pigmented dielectric reflector (5), which has a refractive index curve with two different refractive indexes vertical to function layers, where the first refractive index is greater than the second refractive index. The back electrode layer is formed through a transparent conductive oxide (TCO)-layer with refractive index and the maximum refractive index of the dielectric reflector corresponds to the refractive index of the TCO-layer. The back electrode layer is formed through a highly-doped surface layer as surface layer of the absorber layer. The pigmented dielectric reflector comprises first and second reflector layers, where the first reflector layer comprises a first carrier material with a refractive index, and an embedded pigment, and the second reflector layer has a second carrier material with a refractive index, and imbedded pigment. The pigment has a particle size of 0.1-1 mu m. The portion of the pigment in the first and second reflector layer is 30-60 vol.%. The first reflector layer has a translucency of 25-75%. The carrier material of the first reflector layer has a refractive index of 0.3, which is greater than the refractive index of the carrier material of the second reflector layer. The carrier material of the first reflector layer consists of organic and/or hybridpolymer and/or polysiloxane-based base material. The carrier material of the first reflector layer comprises nanoparticle with refractive index of 2.0 to a portion of 10 vol.% with an average size of 4-30 nm. The second reflector layer comprises a color layer. The first reflector layer has a layer thickness of 10-40 mu m and the second reflector layer has a layer thickness of 20-400 mu m. The function layers are arranged on a substrate (8) in a substrate- or supers