A METHOD AND SYSTEM FOR THE AUTOMATIC RECOGNITION OF DECEPTIVE LANGUAGE

A system for identifying deception within a text includes a processor for receiving and processing a text file. The processor includes a deception indicator tag analyzer for inserting into the text file at least one deception indicator tag that identifies a potentially deceptive word or phrase withi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BACHENKO, JOAN, C, SCHONWETTER, MICHAEL, J
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system for identifying deception within a text includes a processor for receiving and processing a text file. The processor includes a deception indicator tag analyzer for inserting into the text file at least one deception indicator tag that identifies a potentially deceptive word or phrase within the text file, and an interpreter for interpreting the at least one deception indicator tag to determine a distribution of potentially deceptive word or phrases within the text file and generating deception likelihood data based upon the density or distribution of potentially deceptive word or phrases within the text file. A method for identifying deception within a text includes the steps of receiving a first text to be analyzed, normalizing the first text to produce a normalized text, inserting into the normalized text at least one part-of-speech tag that identifies a part of speech of a word associated with the part-of-speech tag, inserting into the normalized text at least one syntactic label that identifies a linguistic construction of one or more words associated with the syntactic label, inserting into the normalized text at least one deception indicator tag that identifies a potentially deceptive word or phrase within the normalized text, interpreting the at least one deception indicator tag to determine a distribution of potentially deceptive word or phrases within the normalized text, and generating deception likelihood data based upon the density or frequency of distribution of potentially deceptive word or phrases within the normalized text.