Fuel cell electrode for low pressure operation

A fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MURPHY, OLIVER J, WENG, DACONG, CISAR, ALAN J
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system. The electrical power output of the design of this invention can be further increased by adding a passage for cooling the stack through contact with a coolant. In particular the invention relates to a low pressure gas electrode, comprising an electrically conducting substrate wherein the substrate comprises at least two opposite faces; a plurality of openings allowing passage from one face to an opposite face, wherein the openings encompass between about 10% and about 90% of the total area of the substrate and an electrically conductive porous material bound to the substrate comprised of a electrically conductive component and a binding component.