METAL SANDWICH STRUCTURE WITH INTEGRAL HARDPOINT

A method of making an expanded metal sandwich structure includes cleaning at least two metal superplastic core sheets to remove metal oxides and residues that would interfere with diffusion bonding of the sheets. The core sheets are placed face-to-face and a gas pressure line fitting is inserted bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WILL, JEFFREY, D, FISCHER, JOHN, R, BULDHAUPT, FREDERICK, W, KISTNER, MATTHEW, G
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method of making an expanded metal sandwich structure includes cleaning at least two metal superplastic core sheets to remove metal oxides and residues that would interfere with diffusion bonding of the sheets. The core sheets are placed face-to-face and a gas pressure line fitting is inserted between one edge and is welded into place. The fitting has a through bore through which gas can flow under pressure from a gas pressure control system into the space between the core sheets. The core sheets are pressed together and laser welded together into a core pack along lines which will form junction lines between the core sheets when the core pack is superplastically expanded. The core pack is chemically cleaned to remove metal oxides and residues that would interfere with diffusion bonding of the core pack sheets to face sheets. Two metal face sheets having superplastic characteristics are chemically cleaned and placed over and under the core pack. An envelope gas fitting is placed between the face sheets and is welded in place while seal welding around the entire peripheral edges of the face sheet and the core pack to produce a sealed envelope pack enveloping the core pack, with gas fittings into the core pack and into a face sheet zone between the face sheets and the core pack. A gas supply tube from the gas supply control system is connected to each of the fittings and air and moisture is purged from the packs by flushing with dry argon. The packs are pressurized to a low pressure with argon to maintain separation of the sheets while heating to prevent premature diffusion bonding. The full pack is placed in an internal cavity of a heated die and is raised to superforming temperatures. Forming gas is injected through the fittings at a forming pressure sufficient to inflate the envelope pack to the interior walls of the cavity, and inflate the core pack to the envelope pack and to diffusion bond the face sheets to the core sheets. The die is opened and the formed pack is removed from the die while still at an elevated temperature.