DUAL OPERATING MODE WARHEAD AND METHOD OF OPERATING SUCH A WARHEAD

A dual operating mode warhead comprises a generally cylindrical explosive charge having a longitudinal axis and an outer peripheral surface extending between front and rear facing initiation surfaces. A front detonator initiates peripheral detonation of the explosive charge at the front facing initi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: LAWTHER, ROBERT, JOHN
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dual operating mode warhead comprises a generally cylindrical explosive charge having a longitudinal axis and an outer peripheral surface extending between front and rear facing initiation surfaces. A front detonator initiates peripheral detonation of the explosive charge at the front facing initiation surface and creates a detonation wave travelling through the explosive charge toward the rear facing initiation surface. A rear detonator initiates detonation of the explosive charge at the rear facing initiation surface and creates a detonation wave travelling through the explosive charge and toward the forward facing initiation surface. Against heavy armor, only the rear initiation is used. A precision shaped charge proximate the front facing surface is responsive to the rear detonation wave to produce a high speed forward travelling jet with excellent armor piercing capability. Against softer targets, a fragmentation case proximate the outer peripheral surface of the explosive charge is responsive to operation of both the first and second detonation waves to produce a radially directed planar sidespray pattern. With this construction, actuation of the rear detonator alone results in an armor piercing mode of operation whereas near simultaneous actuation of both detonators results in a wider area of impact of the forward focused energy and in an enhanced sidespray fragmentation. Timing of initiation of the two detonators will be optimized specifically for any design application.