MAGNETIZED MATERIAL HAVING ENHANCED MAGNETIC PULL STRENGTH AND A PROCESS AND APPARATUS FOR THE MULTIPOLAR MAGNETIZATION OF THE MATERIAL

A process and apparatus for permitting the magnetization of flexible hard magnetic materials in the form of sheets or strips, such as magnetic rubber, wherein opposing arrays formed from alternating magnetic disks and flux conducting elements are use in sets of two with opposing polar moments such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SRAIL, RAYMOND, CHARLES, SZCZEPANSKI, THOMAS, RAYMOND, KUNIG, FREDERIC, WILLIAM, WEISSMAN, ERIC, MARTIN, GLOVER, RICHARD, AUGUST
Format: Patent
Sprache:eng ; fre ; ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A process and apparatus for permitting the magnetization of flexible hard magnetic materials in the form of sheets or strips, such as magnetic rubber, wherein opposing arrays formed from alternating magnetic disks and flux conducting elements are use in sets of two with opposing polar moments such as to induce a magnetic flux in the gap between the discs. The width of the magnetic disk and flux conducting elements, respectively, are selected to optimize the magnetic pull strength of the material. At the array ends are flux conducting elements that are about 1/2 (i.e., from about 0.25 to about 0.75, and preferably from about 0.4 to 0.6) of the width of the internal flux conducting elements. A material to be magnetized is passed between the array sets in contrast with both disks and consequently imprinted with magnetic poles. The magnetized properties of the material is enhanced by passing the material through a second set of arrays which are axially offset with respect to the first set of arrays. This enhances the residual induction of the sample, the shape of the Br2 versus distance curve, and significantly improves the pull strength of the material. A device is provided for the production of the material, and further can be used without modification to imprint nontraversing magnetization by biasing the material to one of the arrays of the second, i.e. exiting, set of arrays.