Lichtbogen-Plasmaschneidvorrichtung und -verfahren mit hochsauerstoffhaltigem Gasschutz

A plasma arc torch has a secondary gas flow that is extremely large during piercing of a workpiece to keep splattered molten metal away from the torch and thereby prevent "double arcing". The secondary flow exits the torch immediately adjacent the transferred plasma arc and is an extremely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LUO, LIFENG, COUCH, RICHARD W. JR, SANDERS, NICHOLAS A, SOBR, JOHN
Format: Patent
Sprache:ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A plasma arc torch has a secondary gas flow that is extremely large during piercing of a workpiece to keep splattered molten metal away from the torch and thereby prevent "double arcing". The secondary flow exits the torch immediately adjacent the transferred plasma arc and is an extremely uniform, swirling flow. A swirl ring is located in the secondary gas flow path at the exit point. A prechamber feeds gas to the swirl ring, which is in turn fed through a flow restricting orifice. For certain applications the secondary gas is a mixture of an oxidizing gas, preferably oxygen, and a non-oxidizing gas, preferably nitrogen, in a flow ratio of oxygen to nitrogen in the range of 2:3 to 9:1. Preferably the flow ratio is about 2:1. A network of conduits and solenoid valves operated under the control of a central microprocessor regulates the flows of plasma gas and secondary gas and mixes the secondary gas. The network includes valved parallel branches that provide a quick charge capability and a set of venting valves, also electrically actuated by the microprocessor, to provide a quick discharge. In a preferred high-definition embodiment, a nozzle with a cut back outer surface and a large, conical head allows a metal seal and enhanced cooling. A two-piece cap protects the nozzle during cutting.