Hybridschaltung für Breitbandmodem

A hybrid circuit that couples a broadband modem to a POTS or ISDN telecommunication line (TL) and comprises a transformer bridge circuit (TBC) that includes a bridge circuit (BC). The bridge circuit is constituted by four legs of which a first (A) and a second (B) nodes, that do not belong to a same...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CASIER, HERMAN JORIS, LATTE, OLIVIER, WOUTERS, PATRICK, SALLAERTS, DANIEL
Format: Patent
Sprache:ger
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hybrid circuit that couples a broadband modem to a POTS or ISDN telecommunication line (TL) and comprises a transformer bridge circuit (TBC) that includes a bridge circuit (BC). The bridge circuit is constituted by four legs of which a first (A) and a second (B) nodes, that do not belong to a same leg, are connected to the two outputs of a differential drive amplifier (DRV) that performs impedance synthesis. A first leg is made of a first impedance matching network (Zm1) connected between the second node (B) and a third node (C). A second leg is made of a first primary winding (TP1) of a transformer and is connected between the third (C) and the first (A) nodes. A third leg is made of a second impedance matching network (Zm2) connected between the first node (A) and a fourth node (D). A forth leg is made of a second primary winding (TP2) of the transformer and is connected between the fourth (D) and second (B) nodes. A secondary winding (TS) of the transformer is magnetically coupled to the first and the second primary windings and is electrically coupled to the telecommunication line. A first impedance divider (Zhin1, Zhout1) is connected between the third (C) and first (A) nodes and has a first central node (E), whilst a second impedance divider (Zhin2, Zhout2) is connected between the fourth (D) and second (B) nodes and has a second central node (F). A receive amplifier (RCV) has inputs connected to the first (E) and second (F) central nodes. The impedance matching networks (Zm1; Zm2) include various passive and reactive components that provides together an impedance value selected based upon the line impedance reflected into the primary windings (TP1; TP2) of the transformer. To perform the impedance synthesis, the drive amplifier (DRV) is a differential drive amplifier having feedback inputs (FB-, FB+) to which the third (C) and fourth (D) nodes are connected.