VERFAHREN UND VORRICHTUNG ZUM PRUEFEN DER WIRKSAMKEIT VON ANTIBIOTIKA
The light scattering of a number of aliquots of a given bacterial/broth suspension, each containing a different antibiotic are rapidly measured and compared with the forward light scattering of a control suspension of the bacteria in the absence of antibiotic. The inhibitory effectiveness of each an...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The light scattering of a number of aliquots of a given bacterial/broth suspension, each containing a different antibiotic are rapidly measured and compared with the forward light scattering of a control suspension of the bacteria in the absence of antibiotic. The inhibitory effectiveness of each antibiotic on the growth of the bacteria is then computed from the substantially simultaneous readings and printed out. The bacterial/broth suspension samples are conveniently deposited in a disposable, plastic, transparent, compartmented container or cuvette into which antibiotic discs are introduced into all but one compartment (chamber) from a ganged disc dispenser. After a brief agitated incubation period of about three hours, the covette is inserted in a photometric analyzer which measures the intensity of light scattered at some angle to the incident beam by each sample chamber and compares it with the light scattered at the same angle by the control chamber to which no antibiotic has been added. The relative effectiveness of each antibiotic is computed and recorded to determine which of the antibiotics is most suitable for treating the patient. The partitioned cuvette includes a filling reservoir from which the inoculated broth is introduced as equal volume aliquots into the interconnected lobes of a row of double lobed chambers. Rotation of the partitioned cuvette transfers the equal volumes of broth inoculum from the interconnected lobes to the transparent and separated lobes of the chambers. Then different antibiotic discs are simultaneously dropped within apertured tubes which are located within all chambers except the control chamber. Elution of the antibiotics into the liquid samples begins immediately. The cuvette is then placed in an incubator/shaker for approximately 3 hours at approximately 36 DEG C to promote bacterial growth and antibiotic elution. The light scattering readings are obtained at the end of the agitation/incubation period and the relative antibiotic effectiveness computed in an analyzer into which the cuvette is inserted and indexed past a light source. The light passes through a lens system which directs a beam of light successively through the transparent lobes of the cuvette. The readings are obtained at a predetermined angle of scatter of, for example, 35 DEG . Initial analog signals are converted to binary digits and logarithms to simplify normalization of the antibiotic-mediated inhibition of bacterial growth by the total gro |
---|