Multi-station monthly scale runoff process random generation method

A multi-station monthly scale runoff process random generation method comprises the steps of determining n river sections needing to be simulated, obtaining monthly scale flow data of each section in m years, and constructing a sample data set; based on the sample data set, a # imgabs0 # dimension j...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TIAN RUI, CAO HUI, JIA BENJUN, WU BIQIONG, GAO FENGXIAN, ZHANG HAIRONG, ZOU XIANGXI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TIAN RUI
CAO HUI
JIA BENJUN
WU BIQIONG
GAO FENGXIAN
ZHANG HAIRONG
ZOU XIANGXI
description A multi-station monthly scale runoff process random generation method comprises the steps of determining n river sections needing to be simulated, obtaining monthly scale flow data of each section in m years, and constructing a sample data set; based on the sample data set, a # imgabs0 # dimension joint distribution function of the monthly scale flow process of the n river sections is constructed, and a density function of joint distribution is a Gaussian mixture model; the monthly-scale flow process of n river sections is randomly generated by randomly sampling the joint distribution function, and the monthly-scale flow process of several years is randomly generated by sampling for several times. According to the method, stochastic simulation of the multi-station monthly scale runoff process can be realized, and compared with a multi-station runoff stochastic simulation master station method based on a seasonal regression model, the statistical characteristics, the self-correlation characteristics and the cr
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118627275A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118627275A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118627275A3</originalsourceid><addsrcrecordid>eNrjZHD2Lc0pydQtLkksyczPU8jNzyvJyKlUKE5OzElVKCrNy09LUygoyk9OLS5WKErMS8nPVUhPzUstgipPLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJQB0l8c5-hoYWZkbmRuamjsbEqAEAzQEzIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-station monthly scale runoff process random generation method</title><source>esp@cenet</source><creator>TIAN RUI ; CAO HUI ; JIA BENJUN ; WU BIQIONG ; GAO FENGXIAN ; ZHANG HAIRONG ; ZOU XIANGXI</creator><creatorcontrib>TIAN RUI ; CAO HUI ; JIA BENJUN ; WU BIQIONG ; GAO FENGXIAN ; ZHANG HAIRONG ; ZOU XIANGXI</creatorcontrib><description>A multi-station monthly scale runoff process random generation method comprises the steps of determining n river sections needing to be simulated, obtaining monthly scale flow data of each section in m years, and constructing a sample data set; based on the sample data set, a # imgabs0 # dimension joint distribution function of the monthly scale flow process of the n river sections is constructed, and a density function of joint distribution is a Gaussian mixture model; the monthly-scale flow process of n river sections is randomly generated by randomly sampling the joint distribution function, and the monthly-scale flow process of several years is randomly generated by sampling for several times. According to the method, stochastic simulation of the multi-station monthly scale runoff process can be realized, and compared with a multi-station runoff stochastic simulation master station method based on a seasonal regression model, the statistical characteristics, the self-correlation characteristics and the cr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=CN&amp;NR=118627275A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=CN&amp;NR=118627275A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TIAN RUI</creatorcontrib><creatorcontrib>CAO HUI</creatorcontrib><creatorcontrib>JIA BENJUN</creatorcontrib><creatorcontrib>WU BIQIONG</creatorcontrib><creatorcontrib>GAO FENGXIAN</creatorcontrib><creatorcontrib>ZHANG HAIRONG</creatorcontrib><creatorcontrib>ZOU XIANGXI</creatorcontrib><title>Multi-station monthly scale runoff process random generation method</title><description>A multi-station monthly scale runoff process random generation method comprises the steps of determining n river sections needing to be simulated, obtaining monthly scale flow data of each section in m years, and constructing a sample data set; based on the sample data set, a # imgabs0 # dimension joint distribution function of the monthly scale flow process of the n river sections is constructed, and a density function of joint distribution is a Gaussian mixture model; the monthly-scale flow process of n river sections is randomly generated by randomly sampling the joint distribution function, and the monthly-scale flow process of several years is randomly generated by sampling for several times. According to the method, stochastic simulation of the multi-station monthly scale runoff process can be realized, and compared with a multi-station runoff stochastic simulation master station method based on a seasonal regression model, the statistical characteristics, the self-correlation characteristics and the cr</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD2Lc0pydQtLkksyczPU8jNzyvJyKlUKE5OzElVKCrNy09LUygoyk9OLS5WKErMS8nPVUhPzUstgipPLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJQB0l8c5-hoYWZkbmRuamjsbEqAEAzQEzIg</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>TIAN RUI</creator><creator>CAO HUI</creator><creator>JIA BENJUN</creator><creator>WU BIQIONG</creator><creator>GAO FENGXIAN</creator><creator>ZHANG HAIRONG</creator><creator>ZOU XIANGXI</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Multi-station monthly scale runoff process random generation method</title><author>TIAN RUI ; CAO HUI ; JIA BENJUN ; WU BIQIONG ; GAO FENGXIAN ; ZHANG HAIRONG ; ZOU XIANGXI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118627275A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TIAN RUI</creatorcontrib><creatorcontrib>CAO HUI</creatorcontrib><creatorcontrib>JIA BENJUN</creatorcontrib><creatorcontrib>WU BIQIONG</creatorcontrib><creatorcontrib>GAO FENGXIAN</creatorcontrib><creatorcontrib>ZHANG HAIRONG</creatorcontrib><creatorcontrib>ZOU XIANGXI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TIAN RUI</au><au>CAO HUI</au><au>JIA BENJUN</au><au>WU BIQIONG</au><au>GAO FENGXIAN</au><au>ZHANG HAIRONG</au><au>ZOU XIANGXI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-station monthly scale runoff process random generation method</title><date>2024-09-10</date><risdate>2024</risdate><abstract>A multi-station monthly scale runoff process random generation method comprises the steps of determining n river sections needing to be simulated, obtaining monthly scale flow data of each section in m years, and constructing a sample data set; based on the sample data set, a # imgabs0 # dimension joint distribution function of the monthly scale flow process of the n river sections is constructed, and a density function of joint distribution is a Gaussian mixture model; the monthly-scale flow process of n river sections is randomly generated by randomly sampling the joint distribution function, and the monthly-scale flow process of several years is randomly generated by sampling for several times. According to the method, stochastic simulation of the multi-station monthly scale runoff process can be realized, and compared with a multi-station runoff stochastic simulation master station method based on a seasonal regression model, the statistical characteristics, the self-correlation characteristics and the cr</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118627275A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Multi-station monthly scale runoff process random generation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TIAN%20RUI&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118627275A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true