Method for generating abnormality determination model, abnormality determination device, abnormality determination method, and learned model

A method for generating an abnormality determination model includes: detecting a load of a subject (S) by load sensors (LS1, LS2, LS3, LS4) disposed on a bed (BD); creating teaching data in which a plurality of types of feature quantities obtained on the basis of the detected load are associated wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FUSE TORU, ZAITSU YUSUKE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FUSE TORU
ZAITSU YUSUKE
description A method for generating an abnormality determination model includes: detecting a load of a subject (S) by load sensors (LS1, LS2, LS3, LS4) disposed on a bed (BD); creating teaching data in which a plurality of types of feature quantities obtained on the basis of the detected load are associated with abnormal states; creating a model for classifying the state of the subject as the abnormal state on the basis of the plurality of feature quantities by supervised machine learning using the teaching data, and determining at least one of the plurality of feature quantities as an explanatory variable on the basis of the model; and generating an abnormality determination model for determining that the subject is in the abnormal state based on the explanatory variables by machine learning using the explanatory variables. The plurality of types of feature quantities include a frequency feature quantity calculated by performing a short-time Fourier transform on a load of the subject. 异常判定模型的生成方法包括:通过配置于床(BD)的载荷传感器(LS1、
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118574574A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118574574A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118574574A3</originalsourceid><addsrcrecordid>eNrjZOjxTS3JyE9RSMsvUkhPzUstSizJzEtXSEzKyy_KTczJLKlUSEktSS3KzcwDyuTnKeTmp6Tm6OBRkJJalpmcik9FLthKoIq8FIWc1MSivNQUiLE8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxGejCknhnP0NDC1NzEyByNCZGDQD2MU73</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for generating abnormality determination model, abnormality determination device, abnormality determination method, and learned model</title><source>esp@cenet</source><creator>FUSE TORU ; ZAITSU YUSUKE</creator><creatorcontrib>FUSE TORU ; ZAITSU YUSUKE</creatorcontrib><description>A method for generating an abnormality determination model includes: detecting a load of a subject (S) by load sensors (LS1, LS2, LS3, LS4) disposed on a bed (BD); creating teaching data in which a plurality of types of feature quantities obtained on the basis of the detected load are associated with abnormal states; creating a model for classifying the state of the subject as the abnormal state on the basis of the plurality of feature quantities by supervised machine learning using the teaching data, and determining at least one of the plurality of feature quantities as an explanatory variable on the basis of the model; and generating an abnormality determination model for determining that the subject is in the abnormal state based on the explanatory variables by machine learning using the explanatory variables. The plurality of types of feature quantities include a frequency feature quantity calculated by performing a short-time Fourier transform on a load of the subject. 异常判定模型的生成方法包括:通过配置于床(BD)的载荷传感器(LS1、</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118574574A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118574574A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FUSE TORU</creatorcontrib><creatorcontrib>ZAITSU YUSUKE</creatorcontrib><title>Method for generating abnormality determination model, abnormality determination device, abnormality determination method, and learned model</title><description>A method for generating an abnormality determination model includes: detecting a load of a subject (S) by load sensors (LS1, LS2, LS3, LS4) disposed on a bed (BD); creating teaching data in which a plurality of types of feature quantities obtained on the basis of the detected load are associated with abnormal states; creating a model for classifying the state of the subject as the abnormal state on the basis of the plurality of feature quantities by supervised machine learning using the teaching data, and determining at least one of the plurality of feature quantities as an explanatory variable on the basis of the model; and generating an abnormality determination model for determining that the subject is in the abnormal state based on the explanatory variables by machine learning using the explanatory variables. The plurality of types of feature quantities include a frequency feature quantity calculated by performing a short-time Fourier transform on a load of the subject. 异常判定模型的生成方法包括:通过配置于床(BD)的载荷传感器(LS1、</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZOjxTS3JyE9RSMsvUkhPzUstSizJzEtXSEzKyy_KTczJLKlUSEktSS3KzcwDyuTnKeTmp6Tm6OBRkJJalpmcik9FLthKoIq8FIWc1MSivNQUiLE8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxGejCknhnP0NDC1NzEyByNCZGDQD2MU73</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>FUSE TORU</creator><creator>ZAITSU YUSUKE</creator><scope>EVB</scope></search><sort><creationdate>20240830</creationdate><title>Method for generating abnormality determination model, abnormality determination device, abnormality determination method, and learned model</title><author>FUSE TORU ; ZAITSU YUSUKE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118574574A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>FUSE TORU</creatorcontrib><creatorcontrib>ZAITSU YUSUKE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FUSE TORU</au><au>ZAITSU YUSUKE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for generating abnormality determination model, abnormality determination device, abnormality determination method, and learned model</title><date>2024-08-30</date><risdate>2024</risdate><abstract>A method for generating an abnormality determination model includes: detecting a load of a subject (S) by load sensors (LS1, LS2, LS3, LS4) disposed on a bed (BD); creating teaching data in which a plurality of types of feature quantities obtained on the basis of the detected load are associated with abnormal states; creating a model for classifying the state of the subject as the abnormal state on the basis of the plurality of feature quantities by supervised machine learning using the teaching data, and determining at least one of the plurality of feature quantities as an explanatory variable on the basis of the model; and generating an abnormality determination model for determining that the subject is in the abnormal state based on the explanatory variables by machine learning using the explanatory variables. The plurality of types of feature quantities include a frequency feature quantity calculated by performing a short-time Fourier transform on a load of the subject. 异常判定模型的生成方法包括:通过配置于床(BD)的载荷传感器(LS1、</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118574574A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Method for generating abnormality determination model, abnormality determination device, abnormality determination method, and learned model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T21%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FUSE%20TORU&rft.date=2024-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118574574A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true