Grading ring parameter optimization method based on convolutional neural network
The invention discloses a grading ring parameter optimization method based on a convolutional neural network. The grading ring parameter optimization method comprises the steps of obtaining a parameter feature data set of a grading ring; the parameter feature data set is used to train a pre-construc...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a grading ring parameter optimization method based on a convolutional neural network. The grading ring parameter optimization method comprises the steps of obtaining a parameter feature data set of a grading ring; the parameter feature data set is used to train a pre-constructed convolutional neural network model to obtain an electric field intensity prediction model, the convolutional neural network comprises a network feature extraction layer, a network feature sharing layer and a network feature fusion layer which are connected in sequence, and the electric field intensity prediction model is obtained. The network characteristic extraction layer comprises a hidden layer for parameter amplification; traversing in a parameter search space by adopting the electric field intensity prediction model to obtain different parameter combinations of the grading ring; evaluating the performance of each group of parameter combination of the grading ring, and determining an optimal grading ring p |
---|