Medical image segmentation system and method fusing MLP branch and CNN branch

The invention belongs to the technical field of medical image segmentation, and discloses a medical image segmentation system and method fusing an MLP branch and a CNN branch, and the method comprises the following steps: 1, extracting global features and local features of a medical image through em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU DONG, SHEN HUALEI, XIONG HAO, SHANGGUAN GUOQING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention belongs to the technical field of medical image segmentation, and discloses a medical image segmentation system and method fusing an MLP branch and a CNN branch, and the method comprises the following steps: 1, extracting global features and local features of a medical image through employing the MLP branch and the CNN branch, and fusing the global features and the local features through employing a fusion branch; 2, calculating a final fusion feature of each hierarchical fusion module; step 3, decoding all the final fusion features by using a decoder, and then performing up-sampling to generate a segmentation image; the method can extract and fully fuse local features and global features, and has better medical image segmentation performance. 本发明属于医学图像分割技术领域,公开一种融合MLP分支和CNN分支的医学图像分割系统及方法,医学图像分割方法包括以下步骤:步骤1,使用MLP分支和CNN分支提取医学图像的全局特征和局部特征,使用融合分支融合全局特征和局部特征;步骤2,计算每个层级融合模块的最终融合特征;步骤3,使用解码器对所有最终融合特征进行解码,然后进行上采样生成分割图;本发明能够提取并充分融合局部特征和全局特征,具有更好的医学图像分割性能。