Prediction model creation method, prediction method, prediction model creation device, prediction device, prediction model creation program, and prediction program
The prediction accuracy of a learned prediction model is improved by setting an appropriate weight using a cluster classified as a learned clustering model. A method for creating a prediction model for material characteristics, the method comprising: a step for acquiring a learning data set; a step...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prediction accuracy of a learned prediction model is improved by setting an appropriate weight using a cluster classified as a learned clustering model. A method for creating a prediction model for material characteristics, the method comprising: a step for acquiring a learning data set; a step for generating a learned clustering model using the learning data set and a clustering model, and classifying the learning data set into N clusters; calculating the distance between the centers of gravity of each cluster; a step for calculating a weight between the clusters using the distance between the centers of gravity of the clusters and a parameter indicating the characteristics of the learning data set; and for each of the clusters, generating a learned prediction model {Mi} 1 < = i < = N using the clusters and the weights.
通过使用被分类为学习完毕的聚类模型的簇来设定适当的权重,提高学习完毕的预测模型的预测精度。材料特性的预测模型制作方法,具有:取得学习用数据集的步骤;使用所述学习用数据集和聚类模型生成学习完毕聚类模型,并且将所述学习用数据集分类为N个簇的步骤;计算各所述簇的重心间的距离的步骤;使用所述簇的重心间的距离和表示所述学习用数据集的特征的参数,计算所述簇间的权重的步骤;以及对于每个 |
---|